Computing Consortium Organization

H Schellman August 2022

8/29/22

Now 2 - ¹/₂ day workshops

- <u>https://indico.fnal.gov/event/55942/</u>
- Talks by early career collaborators
- See where we are on multiple projects
- We need to report to DOE on what we are doing
 - Annual reports are due in early January
- Further in the future
 - actual meeting (in Oregon? At the actual dunes?)

US Consortium – (why we are here today)

- In March 2020 US collaborators submitted a proposal to DOE
 - "Essential computing and software development for the DUNE experiment"
- Originally 10 institutions, 3 were working on advanced pattern recognition and were not funded.
- Now have 7 funding arrived at OSU 9/29/2021 got through the paperwork 2 months later. But fiscal year starts on 5/1/2022....
- Argonne, Brookhaven, Colorado State, Fermilab, Minnesota, Oregon State and Wichita State
- Already done a lot report here
- We need to complete what we said we would do and apply for longer term funding over the next year.

8/29/22

DOE guidance

 Priority should be given to Task 1 (Data bases), within Task II (Frameworks and data structures) to data modeling, data discovery, and signal processing, and within Task III (Common Software, Training, Standards and Infrastructure) to build systems and code standards.

Task I - Databases

- BNL Paul Laycock, Lino Gerlach, conditions database
- CSU = Norm Buchanan, Ana Paula Vizcaya Hernandez
- Minnesota Hajime Muramatsu, Marvin Marshak + Alex Wagner
- FNAL Brandon White, Steve White, Igor Mandrichenko, Vladimir Podstavkov

Task II - Data model (large and small scale)

- Large Scale (FNAL and BNL)
 - MetaCat (Igor Mandrichenko)
 - Data Dispatcher (Igor M., Steve Timm)
 - Hardware/production systems (Kirby, Ken Herner)
 - Rucio (Doug Benjamin, Steve Timm, Robert Illingworth, FNAL team)
- Small Scale (ANL, BNL, CSU, FNAL, OSU)
 - HDF5 and decoding -- Barnali Chowdhury, Amit Bashyal, Peter Van Gemmeren, Tom Junk, Kurt Biery, Saba, CSU postdocs, Jake Calcutt, David Adams, Brett Viren, Doug Benjamin

Frameworks

- This is intertwined with event model and with ND integration
 - FNAL (Kyle Knoepfel, Chris Jones, Andrew Norman and Tom Junk)
 - BNL (Paul Laycock, Brett Viren)
 - Argonne (Barnali Chowdhury and Amit Bashyal)
 - OSU (Jake Calcutt)
 - CSU
 - WSU (ND integration)
 - Wirecell people

Task III Code management/build systems/standards

- Code management and documentation
 - Tom Junk, Jake Calcutt, David Adams
- ND integration
 - Michael Muether, Palash Roy
- Ongoing training and documentation work
 - Ken Herner, Claire David, Mike Kirby, Tom Junk ... and Dave DeMuth
 - HMS is now part of a second DOE graduate training grant!

Overall organization of DUNE offline

What problems are we trying to solve

- LAr TPC's have very large trigger records (200 MB for protoDUNE vs. < 10 MB for ATLAS/CMS). Need to be able to access small chunks of data efficiently.
- possible SuperNova -> 460 TB of data
- New detector technologies
- Many subsystems in ND
- We're supposed to use 75% non-FNAL computing
- Keep up with general chaos due to OS/Authentication/architecture/HPC evolution and people being people.

DUNE FD-Data for Supernova

Pack 150 5 ms APA readouts into a 6 GB file

Ship 20,000 time slices (x 4 modules)

8/29/**8/**29/22

Distributed computing model

- Less "tiered" than current WLCG model → DOMA
- Collaborating institutions (or groups of institutions) provide significant disk resources (~1PB chunks)
- **Rucio** places multiple copies of datasets
- We likely can use common tools:
 - But need our own contribution system
 - And may have different requirements for dataset definition and tracking

8/29/22

• 2 copies of raw data on tape (6 months on disk)

• 1 copy of "test" data stored for 6 months

• 1 copy of reco/sim on tape

• Currently assume 1 reco pass over all data and 1 sim pass/year

- Assume reco/sim resident on disk for 2 years
- Assume 2 disk copies of reco and sim
 - impose shorter lifetimes on tests and intermediate sim steps.

8/29/22

CDR - Resource

estimates to 2025

Longer term projections	 VD assumed to be similar to HD, raw data may be larger due to longer drift. 2 copies of raw data on tape (6 months on disk) 1 copy of "test" data stored for 6 months 1 copy of reco/sim on tape Currently assume 1 reco pass over all data and 1 sim pass/year Assume reco/sim resident on disk for 2 years Assume 2 disk copies of reco and sim
----------------------------	---

8/29/22

8/29/22

Last 2 years Memory use

Last 2 years, CPU request use

Storage at FNAL

8/29/22

US Computing Consortium Meeting

Storage at FNAL

~ SCIENT	TIFIC DATA S	FORAGE: DL	JNE 🗇 🛍								
Max Disk Space Used (last 90 days)		New Tape Space Used		Tot	Total Data Transferred from dCache		Total Data Transferred to dCache				
886 PiB			10.6 PiB			61.2 PiB		26.7 PiB			
					Disk Sp	pace Used by Poo	l Group				
6 PiB					- Formilah D	-		11 MiD	1 260 DiD	407 T:D	EE TID
5 PiB					- Fermilab P	ublic dCache.Storage	Group.dune_readwintePools		1.309 PID	467 TID	33 HB
					- Fermilab P	ublic dCache:Storage	eGroup:dune_PublicScratchPools	172 MIB	1.233 PIB	568 HB	447 TIB
4 PiB					 Fermilab P 	ublic dCache:Storage	eGroup:dune_DuneAnalysisPools	335 MiB	374 TiB	344 TiB	355 TiB
					 Fermilab P 	ublic dCache:Storage	eGroup:dune_DunePhysicsPools	941 KiB	67 TiB	6 TiB	67 TiB
4 PIB			5		— Fermilab P	ublic dCache:Storage	eGroup:dune_CdfWritePools	307 GiB	13 TiB	8 TiB	
3 PiB					— Fermilab P	ublic dCache:Storage	eGroup:dune_SlowPublicScratchPools	63 GiB	10 TiB	851 GiB	8 TiB
2 0:0					- Fermilab P	ublic dCache:Storage	eGroup:dune_Geant4ReadWritePools	1 KiB	9 TiB	3 TiB	692 GiB
2 PIB	JA day				- Fermilab P	ublic dCache:Storage	eGroup:dune_SlowReadWritePools	1 KiB	9 TiB	3 TiB	692 GiB
909 TiB	909 TiB				— Fermilab P	ublic dCache:Storage	eGroup:lbne_DuneAnalysisPools	3 MiB	3 TiB	3 TiB	3 TiB
0 B					— Fermilab P	ublic dCache:Storage	eGroup:dune_NovaPrestagePools	246 GiB	484 GiB	316 GiB	307 GiB
00	2021-01	2021-07	2022-01	2022-07	— Fermilah P	ublic dCache Storage	Groundune HsmWritePools	225 MiR	483 GiR	128 GiB	238 GiB

8/29/22

Moving Data to Europe

FNAL, BNL, Edinburg + OSU testing

8/29/22

[rucio] Replicas per site						
RSE	✓ Replicas	imes Total bytes	~			
QMUL	383,418	806.91TB				
MANCHESTER	381,433	968.05TB				
CERN_PDUNE_EOS	282,793	975.33TB				
DUNE_CERN_EOS	217,976	626.0TB				
RAL_ECHO	214,746	811.42TB				
LANCASTER	198,142	484.92TB				
DUNE_US_BNL_SDCC	191,773	499.18TB				
NIKHEF	177,176	399.04TB				

< <u>1</u> 2 3 >

:=

DUNE RSE USAGE									
RSE		\vee Used	✓ Free	✓ Free(%)	\sim				
PRAGUE	1.13PB	511.3TB	558.9TB	54.583%					
MANCHESTER	1.08PB	1PB	46.3TB	4.728%					
RAL_ECHO	1.0PB	1.4PB	-384.9TB	-42.321%					
QMUL	1.0PB	679.9TB	291.1TB	32.006%					
NIKHEF	981.02TB	399TB	529.3TB	59.324%					
DUNE_ES_PIC	719.94TB	1.1GB	654.8TB	100%					

8/29/22

US Computing Consortium Meeting

:=

< <u>1</u> 2 >

Short term efforts

- Test Rucio/Metacat/DataDispatcher for ProtoDUNE data taking
- Process data from coldboxes using new production interfaced to Rucio/Metacat/DataDispatcher
- Work on HDF5 read/write/sim
 - UK groups will test the Workload Manager
- Improve monitoring
- Configuration and slow controls \rightarrow Conditions DB
- Integrate offline calibrations
- Support ProtoDUNE II running and analysis

Long term efforts

- HPC integration
- Framework improvements
- Continue to integrate hardware databases
- Stay on top of OS/authentication/Spack evolution
- Work with DOE/NSF for **multi-decade** operations program

8/29/22

FTE estimate. Does not include shared facility (storage etc.) costs

- Some effort (mainly operations pastels at top) can be trained collaboration physicists.
- Rest requires experts

8/29/22

- Currently have around 14 FTE experts (FNAL + collab), all in-kind contributions except UK DUNE funded personnel and DOE.
- Expert need is greatest for ProtoDUNE 2 and pre-operations in 2024-2028.

