KATRIN, TRIMS and future analysis in protoDUNE

Ana Paula Vizcaya Hernández

Ana Paula Vizcaya - 30/08/2022

Outline

- Introduction to the KATRIN and TRIMS experiments
- Selected analysis projects
 - Ion background characterization in the KATRIN experiment
 - Ion studies in the TRIMS experiments paper coming out soon
- Future analysis plan with ProtoDUNE data

Effective neutrino mass measurement from tritium β decay

Molecular final-state distribution

Excitations in T_2 gas:

- Electronic: 20 eV
- Vibrational: ~0.1 eV
- Rotational: ~0.01 eV

Beta energy spectrum is modified by the probability P_k and excitation energies V_k

$$\frac{dN}{dE_{e}} = \frac{G_{F}^{2}m_{e}^{5}\cos^{2}\theta_{C}}{2\pi^{3}\hbar^{7}}|M_{\text{nuc}}|^{2}F(Z,E_{e})p_{e}E_{e}$$

$$\times \sum_{i,k}|U_{ei}|^{2}P_{k}(E_{\text{max}}-E_{e}-V_{k})\times\sqrt{(E_{\text{max}}-E_{e}-V_{k})^{2}-m_{vi}^{2}}\times\Theta(E_{\text{max}}-E_{e}-V_{k}-m_{vi})$$
Ana Paula Vizcaya - 30/08/2022

Probability to bound molecular final state

Molecule	Theory	Snell <i>et al.</i>	Wexler <i>et al.</i>
HT	0.55 – 0.57	0.932(10)	0.895(11)
T ₂	0.39 – 0.57	-	0.945(6)

Bodine, Parno, Robertson, Phys. Rev. C 91, 035505

Paper coming out soon!!

lons created in KATRIN experiment

Ion creation rate in the Source:

Tritium beta decay \rightarrow 10¹¹ ions/s

Scattering

→ 10¹² ions/s

→ Background for neutrino mass measurement Ion flux limit into spectrometers: < 2 x 10⁴ ions / s

Spectrometers

Ana Paula Vizcaya	- 30/08/2022
-------------------	--------------

ICE monitoring during ICE ramp up

Rate increases with column density

 Monitor that the ion flux into the spectrometer section is below the limit 10^{1} FPD rate (cps) 250 FPD rate (cps) 200 50 ICE limit of 10⁴ ions/s With spikes 100 50 1.5 2.0 2.5 3.5 3.0 4.0 4.5 Column density (10¹⁷ molecules/cm²) 3000 4000 5000 2000 1000 Time (s)

Tritium density in dipole 1

Ana Paula Vizcaya - 30/08/2022

Analysis plan: Charged pion – Ar interactions

 Measuring interaction cross sections can help reduce systematic uncertainties across DUNE's physics program.

→ Already studied by Jake and Francesca

 Describing more of the dynamics of the Ar nucleus can help with the FSI models

→ Which, amongst other things, have large effects on neutrino energy reconstruction

Charged pion – Ar interactions

Number/type of final state nucleons of absorption of pions

- Study possible final states of the interaction
- Identify any final state proton
- Identify final state neutrons, possibly by protons that have been knocked out a distance from the nucleus

$$\pi^+$$
 Ar

Charged pion – Ar interactions

Proton kinematics of Pion absorption events

• Get the angle of the outgoing proton relative to the incident pion

Status

- Just started to looking at data and MC events of this kind of interactions
- Possibility to improve on the selection of Pion absorption events

Conclusions

- I have worked on analysis projects of the KATRIN and TRIMS experiments
- Main focus on ion studies:
 - Ion background characterization in the KATRIN experiment
 - Ion studies in the TRIMS experiments paper coming out soon
- I have chosen a ProtoDUNE analysis project, charged pion argon interactions of absorption events
 - Expect to start analysis soon

Thank you!

Backup slides

Neutrino mass

Each of the 3 neutrino masses is a linear combination of the 3 neutrino flavors

Where are we?

- Neutrino oscillation experiments give the mass splitting
- What do we know about the offset of the smallest neutrino mass from zero?

^{*}Creative commons figure

lons created in KATRIN experiment

Ion creation rate in the Source:

Tritium beta decay \rightarrow 10¹¹ ions/s

Scattering -

→ 10¹² ions/s

Energy: most ions have thermal energies ~ meV molecular dissociation can have up to ~ 15 eV Recombination: with thermal electrons and between + - ions

Influence of ions on KATRIN measurement

lons are magnetically guided to spectrometers

→ Contamination of the spectrometers section

→ Background for neutrino mass measurement by

- 1. ionization of residual gas after acceleration by high voltage (-18 kV)
- 2. Sputtering of particles from vessel wall

Ion flux limit into spectrometers: $< 2 \times 10^4$ ions / s

Spectrometers

Ring electrode neutralization

Before neutralization

After neutralization

The effective blocking potentials will decrease with time as more electrons are captured in the potential.

DANGER!

Ions are no longer blocked Contamination of PS and MS More background

Neutralization expectation

