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Outline

* Introduction to the KATRIN and TRIMS experiments

» Selected analysis projects
* lon background characterization in the KATRIN experiment
* lon studies in the TRIMS experiments — paper coming out soon

* Future analysis plan with ProtoDUNE data
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Effective neutrino mass measurement from

tritium 3 decay V.,
: -

0.8

Effective neutrino-mass squared is a free
parameter in the fit to the energy
spectrum.

0.6

0.4

Probability (arbitrary units)

0.2

IIIIIIIIIIIIIIIIII

11 l 11 1 I 1 11 I R [N | I 1 | - I | - 1 I 1 | e | l 1 1 1 I 1 1
9772000 4000 6000 8000 10000 12000 14000 16000 18000
Kinetic Energy (eV)

dN  Gfmgcos?6
dE, 2m3h7
X Z|Uei|zpk(5max —E, —V}) X \/(Emax —E, —V)? — m7;x0(Emax — Ee — Vi — my;)
Lk

Ana Paula Vizcaya - 30/08/2022 3

|Mnucl®F(Z, Ee)pE. Current result on m,,< 0.8 eV at 90% CL




Molecular final-state distribution

Probability to bound molecular final state

Snell et al.

0.55-0.57 0.932(10) O. 895(11)

Excitations in T, gas:
* Electronic: 20 eV

e Vibrational: ~0.1 eV T2 0.39-0.57 - 0.945(6)
* Rotational: ~0.01 eV Bodine, Parno, Robertson, Phys. Rev. C 91, 035505

Beta energy spectrum is modified by the

probability P, and excitation energies V,
dN GFmg cos? 6 Paper coming out soon!!
dL. = 3R |Mnucl*F(Z, E¢)p.E.

Z|Uel| Pr(Emax —Ee — Vi) X \/(Emax —E, —V}.)? —mZ,X0(Emax — Ee — Vi, — my;)
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& 4 KATRIN (Karlsruhe TRItium Neutrino
@ experiment) Electron momentum relative

to magnetic field is conserved
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lon creation rate in the Source:
Tritium beta decay = 10!!ions/s
Scattering -> 10%2ions/s

=> Background for neutrino mass measurement
lon flux limit into spectrometers: <2 x10*ions /s

Ana Paula Vizcaya - 30/08/2022 7



Detector rate (cps)
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Optimization of blocking devices

*

Dipole 4
Ring A
Ring B

Optimal
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Length along magnetic field

The optimal settings are:

* Dipole4 => 25V

* RingA=> 26V

 Ring B=> 200V because
of low Penning ion rate

lons are successfully blocked!




LR,
0y

%

A
<Oy Nfﬁﬁo“ 200

175

=
Ul
o

125

100

Detector rate (cps)
N ()] ~
ul o ul

o

Ring electrode neutralization

i ® Before neutralization
] fit: @a=391.013, N=23.652, c=0.343, b=3.346
*  After 2 weeks neutralization
- fit: N=24.404
i DL ¢
] @
. x
A Q
D ¢
9
' ;
) &=y * z ®
25 30 35 40 45 50

Ring B voltage (V)

Background was fixed to
average rate at
PS1="50V.

Recommendation:
Empty traps every
two weeks.

Ring electrode

Nominal (V)

Minimum (V)

Neutralization (V)

Measurement time (days)

Ring A

40

25

0.09 = 0.24

~ 8

Ring B

200

60

0.96 + 0.28

~ 14
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|ICE monitoring during ICE ramp up

* Monitor that the ion flux into the
spectrometer section is below the
limit

FPD rate (cps)
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FPD rate (cps

Rate increases with column density

— =+ |CE limit of 10% ions/s
® \With spikes

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Column density (1017 molecules/cm?)
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Method

Spectrometer potential > T end point
Measure at dipole voltages:
OV (min.) and -350 V (max.)

Results

Dipole 1 column density is 10 times
column density in source

Neutrino mass shift of -0.003 eV? for
the three dipoles

&0 " L
) Tritium density in dipole 1
%wm%ﬁ%@oég

¢ b ooy

+ +

T T
55428 55430

bpll ||

3

Be—— il ,

SR 5 |-

T T
55432 55434

Run number

Dipole 1

LSV

A )

1= el
miE Big;

T
55436 55438

___________lil N M KDL




DEEP UNDERGROUND
NEUTRINO EXPERIMENT



Analysis plan: Charged pion — Ar interactions

* Measuring interaction cross
sections can help reduce
systematic uncertainties across
DUNE’s physics program.

-> Already studied by Jake and
Francesca

* Describing more of the dynamics
of the Ar nucleus can help with

Ticks (0.5 us)
F ey
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the FSI models
9 WhiCh' amongSt Other thingS' ‘ 50 100 150 200 250 300 350 OO
have large effects on neutrino Wire number

Charge/tick/channel (ke)

energy reconstruction
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Charged pion — Ar interactions

Number/type of final state nucleons of absorption of pions
* Study possible final states of the interaction

* |dentify any final state proton

* |dentify final state neutrons, possibly by protons that have been
knocked out a distance from the nucleus
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Charged pion — Ar interactions

Proton kinematics of Pion
absorption events

5200

5000

* Get the angle of the outgoing proton
relative to the incident pion

Status

* Just started to looking at data and 4200
MC events of this kind of
interactions
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* Possibility to improve on the
selection of Pion absorption events
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Conclusions

* | have worked on analysis projects of the KATRIN and TRIMS
experiments

* Main focus on ion studies:
* lon background characterization in the KATRIN experiment
* lon studies in the TRIMS experiments — paper coming out soon

* | have chosen a ProtoDUNE analysis project, charged pion —argon
interactions of absorption events
* Expect to start analysis soon



Thank you!

TRIMS
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Backup slides



Neutrino mass

Each of the 3 neutrino masses is a linear
combination of the 3 neutrino flavors

Where are we?

* Neutrino oscillation
experiments give the mass
splitting

 What do we know about the
offset of the smallest neutrino
mass from zero?
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lon creation rate in the Source:
Tritium beta decay = 10!!ions/s
Scattering -> 10%2ions/s

Energy: most ions have thermal energies ~ meV
molecular dissociation can have up to ~ 15 eV
Recombination: with thermal electrons and between + - ions
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Influence of ions on KATRIN
measurement

lons are magnetically guided to spectrometers

=> Contamination of the spectrometers section

=> Background for neutrino mass measurement by
1. ionization of residual gas after acceleration by high voltage (-18 kV)

2. Sputtering of particles from vessel wall

lon flux limit into spectrometers: < 2x10%ions /s Spectrometers
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Before neutralization neutralization

Longitudinal energy E|
Longitudinal energy Ej

Length along magnetic field Length along magnetic field

» time

The effective blocking potentials will decrease with time as
more electrons are captured in the potential.

lons are no longer blocked
Contamination of PS and MS
More background
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