
Igor Mandrichenko, FNAL
DUNE, Summer 2022 Consortium Meeting

Data Management Software Update



Big Picture



SAM functions:
• Replica Management -> Rucio (driver)
• Metadata Management -> MetaCat
• Workflow Management (SAM Station) 

-> Data Dispatcher

SAM Replacement Project



Ingestion Daemon
Declaration Daemon

Data Ingestion



• Use XRootD client to scan the source
• Once data and metadata files are there,
• Copy data and metadata

– Use FTS3 (IngestionD)
– Use xrdcp --tpc (DeclaD, EOS to EOS)

• DeclaD: declare the file to:
– Rucio

• Create dataset with replication rules
– MetaCat
– SAM (just in case)

• Remove sources (rename, move, delete)
• Multiple threads, one file (data and metadata) per thread
• Local persistent DB with historic data, GUI for monitoring

How they both work



In terms of SAM replacement:
• FTS -> Declaration Daemon
• FTSLight -> Ingestion Daemon

• Scan the source
• Copy to the destination
• Declare (optionally)
• Remove/hide the source
• Repeat

Data Ingestion

Data challenge data flow



• Much needed real life testing
– Debugging, features

• Tested at the production file and data transfer rates
– ~0.5 Hz in average, ~1 Hz in peak
– 2GB/s data transfer rate average

• Lesson learned:
– Combine Ingestion and Declaration daemons into single 

configurable product, with options:
• Transport mechanism - FTS3 or “local” copy
• Whether to declare files to MetaCat/Rucio/SAM

Data Ingestion in Data Challenge



MetaCat - metadata catalog



• Store metadata
• Efficient metadata queries
• External metadata access without copying

MetaCat - metadata catalog



• Project is pretty stable
• Demonstrated access to external data sources

– Filter file set by data stored elsewhere
– Make metadata from the external source available for 

querying/output 
– Runs conditions database

• Access to another relational DB
– Rucio replica locations

• API access to another system
• Documentation: https://metacat.readthedocs.io

MetaCat Updates



• Data Dispatcher
– Query when creating a 

project
• Declaration Daemon

– Declaration of new files
– POMS via the DD client (?)

• Workflow Allocator
– Declaration of new files

• External data sources
– Runs conditions DB
– Rucio (replica locations)

Integration with other components



MetaCat during the Data Challenge
Not much needed to be done
• Handled the query/declaration load well: ~0.5 Hz average (higher in 

peaks, 1-2 Hz ?)
• Still using development instance of the DB

– Need to migrate to the one supported by DBAs
• Fixed minor things in API, documentation
• declare_meta.py - declare a file using JSON file in the format 

produced by DAQ
– Convert to MetaCat API format

• Issues with handling delegated X.509 proxy certs while authenticating the 
client



MetaCat is a mature product tested well by the data challenge

• Still need more user testing - may need more features
• Support for features SAM users need/like

– File retiring ?
• Create parameter category structure for ProtoDUNE/DUNE

– Test the functionality of parameter namespace enforcement
• WLCG tokens for authentication
• Anonymized user identity

MetaCat: to do



Project level workflow management

Data Dispatcher



• Project is a set of files to 
process

• Worker interface “get next 
file”

• Project management, 
monitoring, history

Data Dispatcher

Scope: replacement for SAM Station
• “Local” workflow management
• Interface for Global WMS - POMS or similar



Worker:
• Get next file (CPU site, 

project, worker id)
– -> DID, metadata, URL
– Block until a file 

becomes available or 
project ends

• File done(project id, DID)
• File failed(project id, DID)

– To be retried ?

Project-level Workflow Management
File state diagram

To do: what if the worker dies without releasing the file ?



• Command line (CLI)
– Create project
– Monitor project status
– Replica availability
– Cancel/restart project

• Worker interface (CLI)
– Next file
– File done/failed

• API (Python), via REST
– Same functions as CLI

• GUI
– Project monitoring, history
– Replica availability, history

Interfaces

Documentation: https://data-dispatcher.readthedocs.io
• Installation, CLI, API

https://data-dispatcher.readthedocs.io


GUI



When creating a project in Data Dispatcher, optionally:
• Attach arbitrary metadata to the project and/or files
• Copy metadata from MetaCat

Worker (with “get next file”) receives:
• The project metadata
• File metadata

Can be used to parametrize the project

Project and file metadata



Replica availability information
• Bulk query Rucio when DD 

starts or new project is 
created

– Scale: 10K files
• Notifications from Rucio when 

replica availability changes
– STOMP message queue
– Message Broker

Replica Availability



Replica staging for tape-based 
systems

• For now, dCache only
• Create bulk stage/pin 

request
• Poll for request status

– Poll for individual 
replica availability if 
the request is in 
progress

Replica Availability



• Staging interface to CTA, other tape systems
• WLCG tokens for authentication
• Finish integration with POMS
• GUI/reporting improvements - implement SAM GUI features
• Anonymized user identity
• Proposal to integrate Workflow Allocator with Data Dispatcher 

published, can be discussed

Data Dispatcher: To DO


