A =Y Brookhaven
‘ Colorado State Umver51ty ' National Laboratory

U.S. DEPARTMENT

ENERGY

Conditions Database

Ana Paula Vizcaya Hernandez, Lino Gerlach, Norm Buchanan and
Paul Laycock (blame me!)

US DUNE Computing Consortium meeting - August 31st, 2022 YW K1 ()) @BrookhavenLab

HSF History Report of the Conditions DB WG

Paul Laycock, on behalf of

In 2017 we wrote the HSF Community White thehar Lenclions D9 e

paper

Charge and Scope
| led the working group and we converged on

the core ideas and best practice: - Scope: Conditions data includes any ancillary data associated with primary
data taking such as detector configuration, state or calibration or the
e High degree of separation between client environment in which the detector is operating. In any non-trivial
experiment, conditions data typically reside outside the primary data store
and server, client-side is simple but takes for various reasons (size, complexity or availability) and are usually
TR accessed at the point of event-data processing or analysis (including for
care of (de)se”ahsatlon Monte Carlo simulations). The ability of any experiment to produce correct

e Conditions accessed via a REST interface and timely results depends on the complete and efficient access of the
: oy _ necessary conditions for each stage of data handling.
e (Caching must be built in, good experience

using web proxy technologies. Clients - Charge: This group should evaluate all elements of the infrastructure
required for the access and management of conditions data in HEP for the
coming 5-10 years. By looking at representative use cases, successful
proxies and servers architectural patterns that can be applied to different experiments should
be examined. Where possible the group should study the possibility to
develop common solutions and make recommendations.

should be able to deal with multiple

e Relational DB for data model is preferred

L? Brookhaven

National Laboratory

What are “conditions data”

This is not an unambiguous term! Review the HSF scope:

Scope: Conditions data includes any ancillary data associated with primary
data taking such as detector configuration, state or calibration or the
environment in which the detector is operating. In any non-trivial
experiment, conditions data typically reside outside the primary data store
for various reasons (size, complexity or availability) and are usually
accessed at the point of event-data processing or analysis (including for
Monte Carlo simulations). The ability of any experiment to produce correct
and timely results depends on the complete and efficient access of the
necessary conditions for each stage of data handling.

In practice, in large experiments with distributed computing, it’'s the “access at the point of event-data
processing or analysis” that is VERY important. The solution to that has very particular requirements.

k;‘ Brookhaven

National Laboratory

Conditions data and use cases

« Use case: operations

« We need to write lots of information about the experiment hardware: voltage,
temperature, current...

« That data is crucial for operations: identifying and diagnosing problems
» Write rates are high (Hz * channels * detectors), read rates are low

« The users are usually experts or shifters using a monitoring client to show trends
Offline generally has

very little influence on

- Use case: reconstruction the online DB design

« A subset of the information above may be needed for event reconstruction

« Other non-event data are also needed during reconstruction: calibrations and
alignment, accelerator parameters...

 Write rates are low, read rates can be tens of kHz

« The user is a (distributed) computing system, which can mean many thousands of
nodes trying to access the same data at the same time

« Caching is essential

k? Brookhaven

National Laboratory 4

Conditions data access from software
frameworks

Most people don’t have experience with, and therefore are uncomfortable working with, databases. Those
creative spirits will go to great lengths to avoid interacting with a database. See e.g. the HSF Data Analysis
WG’s paper on Metadata: hitps://arxiv.org/abs/2203.00463.

We want an API that hides the database access. Just configure it, and then request your data using
the minimal information possible

We would like to move to a run-index design. That requires some reformatting work, not for the DAQ
case which is inherently Run-indexed, but for some of the ad hoc DRA DBs that already exist. The basic

design idea is:

e Get your conditions data from ONE DB interface (not an ad hoc DB interface for each source)
e Access your data by Run number

CondSvc.setGlobalTag (<GlobalTagName>) ; Once per job

CondSvc.get (<MyConditionsType>, <RunNumber>); Ineach module

L? Brookhaven

National Laboratory

https://arxiv.org/abs/2203.00463

Data flow

That software framework API should be hitting

>,

Metacat Data
Discovery DB
(user interface)

Central offline database for
reconstruction and analysis

Aggregation database for offline

Online mission-critical databases

L? Brookhaven

’ National Laboratory 6

Data reduction

That software framework API should be hitting
and ideally nothing else (think HPC)

Metacat Data
Discovery DB
(user interface)

Central offline database for
reconstruction and analysis

Aggregation database for offline

Online mission-critical databases

L? Brookhaven

* National Laboratory 7

Data reduction

That software framework API should be hitting

and ideally nothing else (think HPC) \

Central offline database for
reconstruction and analysis

Metacat Data
Discovery DB
(user interface)

CondSvc.setGlobalTag (<GlobalTagName>) ; Once per job

CondSvc.get (<MyConditionsType>, <RunNumber>); Ineach module

L:.‘ Brookhaven

National Laboratory

HSF Schema

 Now we have a dedicated HEP Software Foundation (HSF) conditions data activity:

https://hepsoftwarefoundation.org/activities/conditionsdb.html

» Key recommendations for conditions data handling

» Separation of payload queries from metadata queries

GLOBAL TAG
W N _ name (unique id)
ice ; open intervals only ipshot : used for versioning
nsi time: versioning TR
o .] ’ 1ash: payload reference valid
The main idea of the schema is that it doesn’t —— e
actually store payloads, it stores references
Query this schema to effectively get a list of o TAG ———3 GLOBAL TAG AP |
i 1ame (unique id) jlobal tag nam
calibrationType : payloadReference BLOB serialized objects | mem olc - close last lov b M E——
e ———————————— sertion ime: versioning
bje ¢. serialization
pairs. Retrieve payloads separately (when needed) ecord: client software
time type (runflumi, time, ...)
e —"

HEP Software Foundation
Community White Paper Working Group — Conditions Data

https://hepsoftwarefoundation.org/activities/conditionsdb.html

Under the hood - example

That software framework API should be hitting and ideally nothing else
(think HPC)

CondSvc.setGlobalTag (“ProtoDUNE-awesome”) Once per job (global configuration)

CondSvc.get (“SpaceChargeCorrection”, 72) In each module

Inside the service...

CondDict = https://myserver.fnal.gov/myservice/whichPayloads/?gtName=ProtoDUNE-awesome&runNumber=72
LFN = CondDict[calibrationType] // (calibrationType = “SpaceChargeCorrection” in this example)

payload failover defined as physical filename options (local, then /cvmfs/, then mylovelyserver)

¢ Brookhaven
X 1

National Laboratory

Under the hood - example (2)

CondSvc.setGlobalTag (“ProtoDUNE-awesome”) Once per job (global configuration)

CondSvc.get (“SpaceChargeCorrection”, 72) In each module

Imagine the SC correction for run number 72 is stored in a file called “SCE_72.root”, and we construct LFNs based on
md5 checksums to make sure we’re efficient and only insert unique entries

so the LFN is “/adhod8393jkldm/SCE_72.root” (data management experts, think of LFN vs PFN)

the framework downloads payloads and caches them in a local /conditions directory

Trying.. local “/conditions/adhod8393jkldm/SCE 72.root”... not found
Trying.. cvmfs “/cvmfs/dune/conditions payloads/adhod8393jkldm/SCE 72.root” not found
Trying.. server “https://myserver.fnal.gov/payloads-service/adhod8393jkldm/SCE 72.root - found !

¢ Brookhaven
National Laboratory 11

Under the hood - HPC

That software framework API should be hitting and ideally nothing else

(think HPC)
CondSvc.setGlobalTag (“ProtoDUNE-awesome”) Once per job (global configuration)
CondSvc.get (“SpaceChargeCorrection”, 72) In each module

If | can’t access the server for the metadata DB, | can modify the service... effectively

CondDict = something which can give me the {calibrationType :
Belle 1l fails over to a sqlite.db file on /cvmfs, ATLAS has an sqlite backend option...
The payload locations already obey an LFN->PFN design

and the service itself can be lightweight

k? Brookhaven

National Laboratory

payloadReference} pairs

12

HSF reality in pre-production for sPHENIX

GlobalTag
id BIGINT
name CHARACTER VARYING(80)
description CHARACTER VARYING(255)

A

PayloadListldSequence

created TIMESTAMP(6) WITH TIME ZONE
updated TIMESTAMP(6) WITH TIME ZONE
status_id BIGINT y |
type_id BIGINT ¥

f

|
4 N

GlobalTagStatus [GlobalTagType

id BIGINT id BIGINT

name CHARACTER VARYING(80) name CHARACTER VARYING(80)
description CHARACTER VARYING(255)
created TIMESTAMP(6) WITH TIME ZONE

description CHARACTER VARYING(255)
created TIMESTAMP(6) WITH TIME ZONE

id BIGINT
PayloadList
id BIGINT
name CHARACTER VARYING(255)
description CHARACTER VARYING(255) < R
created TIMESTAMP(6) WITH TIME ZONE
updated TIMESTAMP(6) WITH TIME ZONE
global_tag_id BIGINT »
payload_type_id BIGINT ¥

Y
PayloadType
id BIGINT
name CHARACTER VARYING(80)
description CHARACTER VARYING(255)

created TIMESTAMP(6) WITH TIME ZONE

PayloadIlOV
id BIGINT
payload_url CHARACTER VARYING(255)
major_iov BIGINT
minor_iov BIGINT

major_iov_end BIGINT
minor_iov_end BIGINT
description CHARACTER VARYING(255)

created TIMESTAMP(6) WITH TIME ZONE
updated TIMESTAMP(6) WITH TIME ZONE
payload_list_id BIGINT yJ

« Written by the Belle || CDB developer, based on HSF schema and leveraged a lot of useful
discussions in the HSF CDB activity with ATLAS and CMS experts

« Postgres backend, Django REST for the service

« sPHENIX use case is 200k cores running at BNL, so performance is a very high priority!

« Expect to migrate Belle Il to the same software

» Using cvmfs for file storage (and can write directly to the underlying file system at BNL)

Proposal

We try the thing produced for sPHENIX (takes data next year, in pre-production now). Main dev is funded
by Belle Il Ops program, part of my team based at CERN

We deploy it at FNAL, simple Postgres DB schema, lightweight REST service preferably deployed on OKD
(what we're using at BNL)

Lino and Ana Paula are working out who does what:
https://docs.qgoogle.com/document/d/1hndm5W2019A7SQ4hAgP5GNiyfNvkevVidwVxf9fc6cq/edit?usp=sharing

Most of the work is independent of the service and related to moving to run-based access and a
common API

The software APl/interface allows us to switch out the backend in case of need and in many ways is the
main aim of this, moving people to a simple and unique interface to conditions data

k? Brookhaven

National Laboratory

https://docs.google.com/document/d/1hndm5W2OI9A7SQ4hAgP5GNiyfNvkcvVi4wVxf9fc6cg/edit?usp=sharing

