
Conditions Database

US DUNE Computing Consortium meeting - August 31st, 2022

Ana Paula Vizcaya Hernandez, Lino Gerlach, Norm Buchanan and
Paul Laycock (blame me!)

HSF History
In 2017 we wrote the HSF Community White
paper

I led the working group and we converged on
the core ideas and best practice:

● High degree of separation between client
and server, client-side is simple but takes
care of (de)serialisation

● Conditions accessed via a REST interface
● Caching must be built in, good experience

using web proxy technologies. Clients
should be able to deal with multiple
proxies and servers

● Relational DB for data model is preferred

2

What are “conditions data”
This is not an unambiguous term! Review the HSF scope:

3

In practice, in large experiments with distributed computing, it’s the “access at the point of event-data
processing or analysis” that is VERY important. The solution to that has very particular requirements.

4

Offline generally has
very little influence on
the online DB design

Conditions data access from software
frameworks
Most people don’t have experience with, and therefore are uncomfortable working with, databases. Those
creative spirits will go to great lengths to avoid interacting with a database. See e.g. the HSF Data Analysis
WG’s paper on Metadata: https://arxiv.org/abs/2203.00463.

We want an API that hides the database access. Just configure it, and then request your data using
the minimal information possible

We would like to move to a run-index design. That requires some reformatting work, not for the DAQ
case which is inherently Run-indexed, but for some of the ad hoc DRA DBs that already exist. The basic
design idea is:

● Get your conditions data from ONE DB interface (not an ad hoc DB interface for each source)
● Access your data by Run number

5

Once per job

In each module

https://arxiv.org/abs/2203.00463

Data flow
That software framework API should be hitting

6

Online mission-critical databases

Aggregation database for offline

Central offline database for
reconstruction and analysis

Data reduction
That software framework API should be hitting

and ideally nothing else (think HPC)

7

Online mission-critical databases

Aggregation database for offline

Central offline database for
reconstruction and analysis

Data reduction
That software framework API should be hitting

and ideally nothing else (think HPC)

8

Central offline database for
reconstruction and analysis

Once per job

In each module

HSF Schema

9

• Now we have a dedicated HEP Software Foundation (HSF) conditions data activity:

https://hepsoftwarefoundation.org/activities/conditionsdb.html

• Key recommendations for conditions data handling

• Separation of payload queries from metadata queries

HEP Software Foundation
 Community White Paper Working Group – Conditions Data

The main idea of the schema is that it doesn’t
actually store payloads, it stores references
Query this schema to effectively get a list of

calibrationType : payloadReference

pairs. Retrieve payloads separately (when needed)

https://hepsoftwarefoundation.org/activities/conditionsdb.html

That software framework API should be hitting and ideally nothing else
(think HPC)

Under the hood - example

10

Once per job (global configuration)

In each module

Inside the service…

CondDict = https://myserver.fnal.gov/myservice/whichPayloads/?gtName=ProtoDUNE-awesome&runNumber=72

LFN = CondDict[calibrationType] // (calibrationType = “SpaceChargeCorrection” in this example)

payload failover defined as physical filename options (local, then /cvmfs/, then mylovelyserver)

(“ProtoDUNE-awesome”)

(“SpaceChargeCorrection”, 72)

Under the hood - example (2)

11

Once per job (global configuration)

In each module

Imagine the SC correction for run number 72 is stored in a file called “SCE_72.root”, and we construct LFNs based on
md5 checksums to make sure we’re efficient and only insert unique entries

so the LFN is “/adhod8393jkldm/SCE_72.root” (data management experts, think of LFN vs PFN)

the framework downloads payloads and caches them in a local /conditions directory

Trying… local “/conditions/adhod8393jkldm/SCE_72.root”... not found
Trying… cvmfs “/cvmfs/dune/conditions_payloads/adhod8393jkldm/SCE_72.root” not found
Trying… server “https://myserver.fnal.gov/payloads-service/adhod8393jkldm/SCE_72.root - found !

(“ProtoDUNE-awesome”)

(“SpaceChargeCorrection”, 72)

That software framework API should be hitting and ideally nothing else
(think HPC)

Under the hood - HPC

12

Once per job (global configuration)

In each module

If I can’t access the server for the metadata DB, I can modify the service… effectively

CondDict = something which can give me the {calibrationType : payloadReference} pairs

Belle II fails over to a sqlite.db file on /cvmfs, ATLAS has an sqlite backend option…

The payload locations already obey an LFN->PFN design

and the service itself can be lightweight

(“ProtoDUNE-awesome”)

(“SpaceChargeCorrection”, 72)

HSF reality in pre-production for sPHENIX

13

• Written by the Belle II CDB developer, based on HSF schema and leveraged a lot of useful
discussions in the HSF CDB activity with ATLAS and CMS experts

• Postgres backend, Django REST for the service
• sPHENIX use case is 200k cores running at BNL, so performance is a very high priority!

• Expect to migrate Belle II to the same software
• Using cvmfs for file storage (and can write directly to the underlying file system at BNL)

Proposal

14

We try the thing produced for sPHENIX (takes data next year, in pre-production now). Main dev is funded
by Belle II Ops program, part of my team based at CERN

We deploy it at FNAL, simple Postgres DB schema, lightweight REST service preferably deployed on OKD
(what we’re using at BNL)

Lino and Ana Paula are working out who does what:
https://docs.google.com/document/d/1hndm5W2OI9A7SQ4hAgP5GNiyfNvkcvVi4wVxf9fc6cg/edit?usp=sharing

Most of the work is independent of the service and related to moving to run-based access and a
common API

The software API/interface allows us to switch out the backend in case of need and in many ways is the
main aim of this, moving people to a simple and unique interface to conditions data

https://docs.google.com/document/d/1hndm5W2OI9A7SQ4hAgP5GNiyfNvkcvVi4wVxf9fc6cg/edit?usp=sharing

