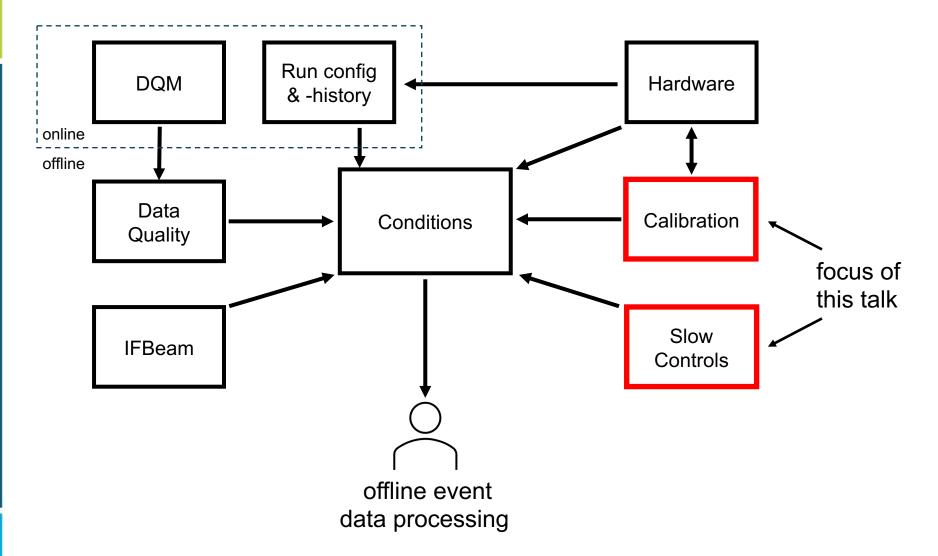


Contributions in the Database Group

Lino Gerlach, Paul Laycock

31.08.2022

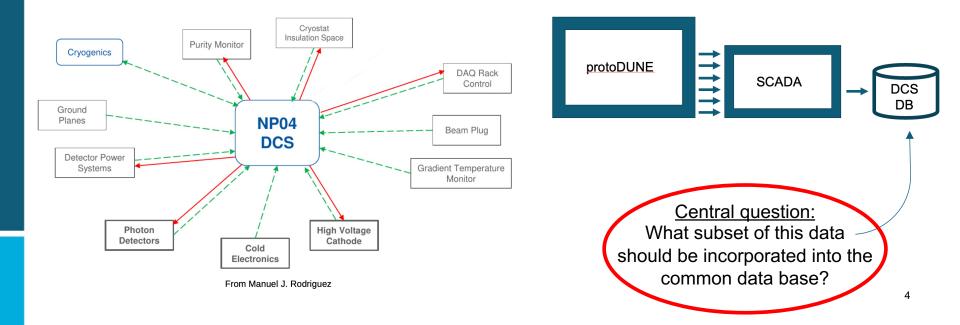
Overview

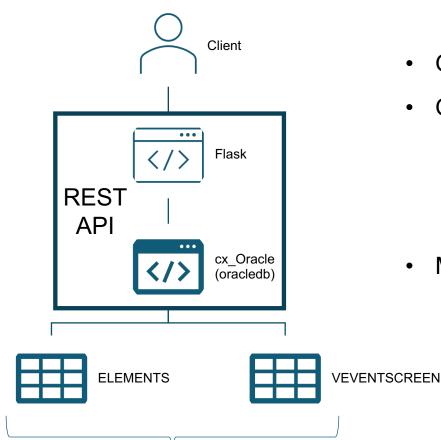

Introduction

- Database group is developing conditions Database
 - Conditions Data: 'Any additional data needed to process event data'
- Need to understand offline needs for this data

My contributions

- Investigate use cases of conditions data (at ProtoDUNE)
 - From Slow Controls system
 - For calibrations (as 'Calibration Liaison for Offline Computing')


Conditions Data - Sources


Calibration & Slow Controls data only a subset of all conditions data!

Slow Controls Data - Introduction

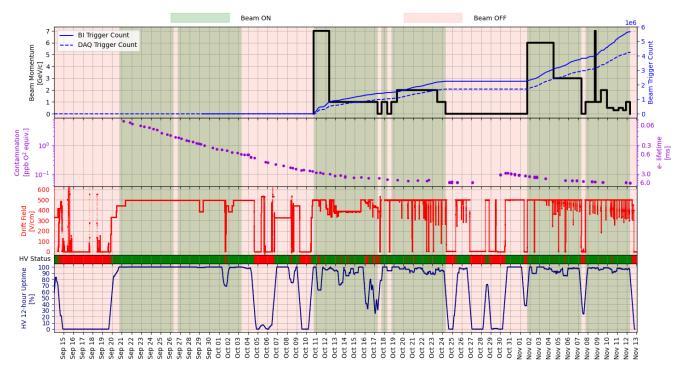
- Data from Slow Controls (or Detector Control System, 'DCS')
 - E.g., LAr temp. & purity, high-voltage, ground impedance
 - Indexed by time stamp & stored in archive ('DCS-DB')
 - Accessed predominantly by detector experts
- Challenge: raw data written w/ very high granularity
 - Higher granularity than needed for offline processing

Slow Controls DB API

NP04 DCSDB

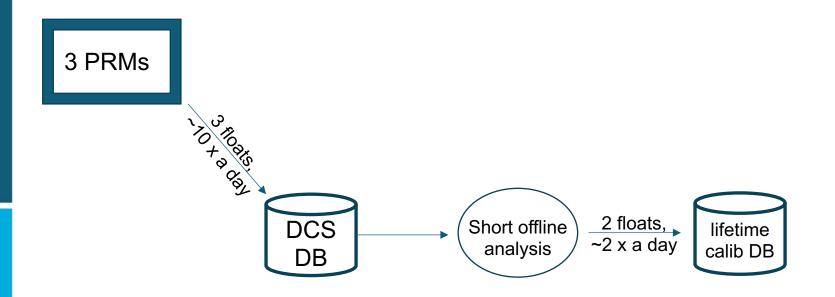
- Originally written by Roland Sipos
- Oracle DB accessed by REST API
 - Read-only
 - Deploying cx_Oracle & Flask
- My contribution:
 - Debugging: All original

functionalities work now

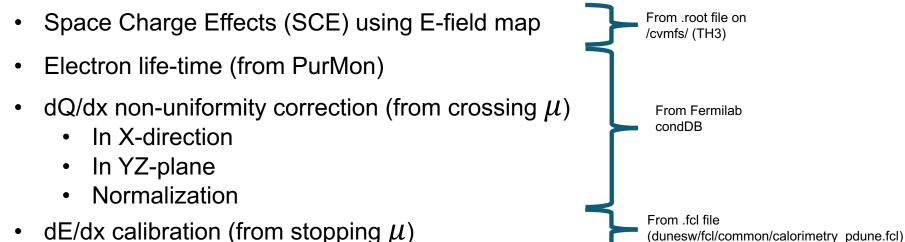

- Implemented basic plotting
- Deployed on CERN VM
 - Now online & accessible!

[ligerlac@lxplus738 ~]\$ curl http://vm-01.cern.ch:5000/current/beamplug

[["Tue, 29 Mar 2022 13:42:26 GMT",23.705150604248047],["Tue, 29 Mar 2022 13:42:45 GMT",22.39800453186035],["Tue, 29 Mar 2022 1 3:42:27 GMT",958.7384033203125],["Tue, 29 Mar 2022 13:41:41 GMT",7.999131679534912],["Tue, 29 Mar 2022 13:41:41 GMT",4.5572915 07720947],["Tue, 29 Mar 2022 12:51:41 GMT",22.0],["Tue, 29 Mar 2022 13:11:41 GMT",21.100006103515625],["Tue, 29 Mar 2022 12:43 :17 GMT",998.0026245117188],["Tue, 29 Mar 2022 12:43:17 GMT",0.4530164897441864],["Tue, 29 Mar 2022 13:42:47 GMT",0.0084257144 48094368]]


Example use case 1: Search for unstable HV periods

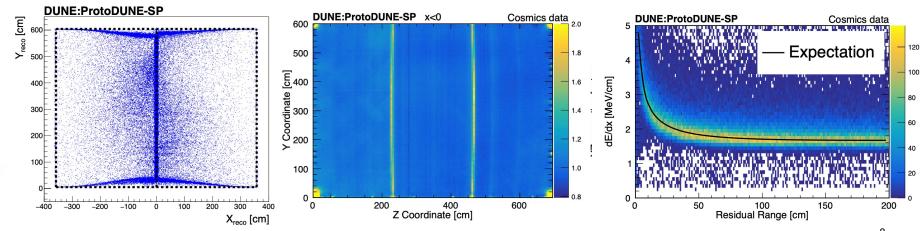
- protoDUNE-SP Run-1 Analysis conducted by Kevin Wood
- Analyze current and voltage to identify periods of unstable HV
 - Originally cut-based -> looking at ML improvements (IRIS HEP Fellowship)
- Resulting in event filter (ProtoDUNEUnstableHVFilter.fcl)
 - LArSoft Module checks if event falls into such period



Example Use Case 2: Electron Lifetime

- Electron lifetime constantly measured by 3 monitors (PrM) across detector
 - Store ~10 values each per day in DCS-DB
- PrM values are transformed into TPC values (simple scaling)
 - Results are written into dedicated 'lifetime calib DB'
 - Granularity: Roughly twice a day (central value + unc.)

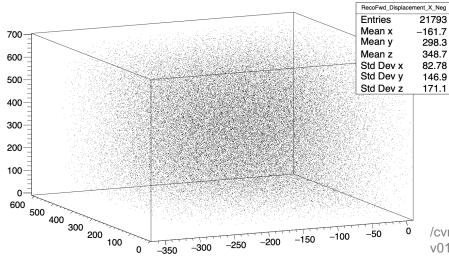
protoDUNE-SP Calibrations



dQ/dx YZ

dE/dx calibration (from stopping μ)

SCE



B. Abi et al 2020 JINST 15 P12004

SCE Calibration

- Positive ions build up in detector and distort E-field
 - Displaced spatial reconstruction
 - Altered absolute charge response (recomb.) •
- Simulate E-field distortions in 3D
 - Augment with data from cosmics
- Assumed as constant over time!
 - Might become time-dependent for HD

Fwd & bkw displacement, E-field

- X.Y.Z coordinate
- Split into pos and neg x-values

۲ دورہ دورہ

500

300

200

500

18 TH3's, 27027 bins (21*33*39) containing doubles File size: ~1 MB

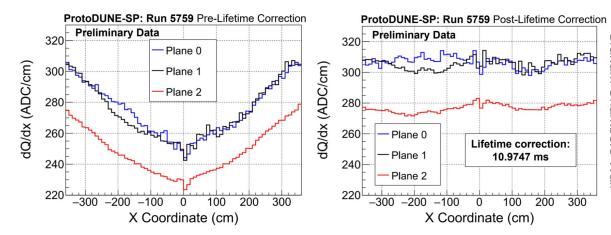
/cvmfs/dune.opensciencegrid.org/products/dune/dune pardata/ v01 80 00/SpaceChargeProtoDUNE/SCE DataDriven 180kV v4.root

MC: Downstream Face AZ [cm]

Data: Downstream Face ΔZ [cm]

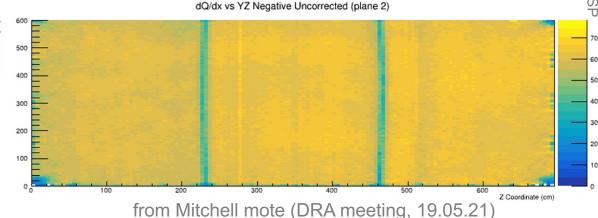
DUNE:ProtoDUNE-SP

DUNE:ProtoDUNE-SP


9

Electron Lifetime & dQ/dx Calibrations

Lifetime calibration


$$Q(t) = Q_0 \exp(-(t_{hit} - t_0/\tau))$$

- Only pass param au
 - time-indexed
 - Run1: 107 values

dQ/dx calibration

- 5x5 cm² grid in YZ
- 5cm grid in X
- for each wire plane (x6)
 - ~10^5 floats
- Run-index (one per run)

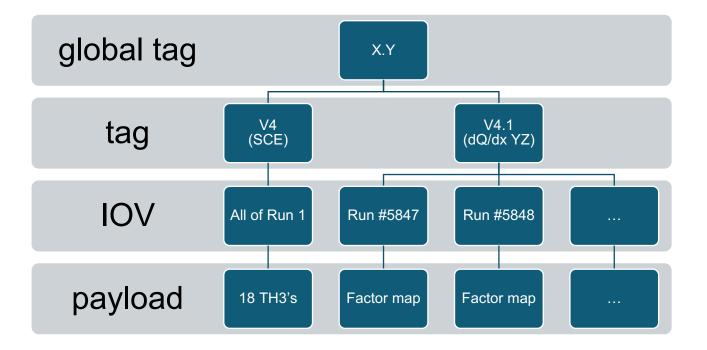
Charge response Graham and energy calibration of ProtoDUNE-SP 0 hambers-Wall

Summary

- Investigated use cases of conditions data to understand requirements
 - Slow Controls: Unstable HV & Electron lifetime
 - Calibrations: SCE, dQ/dx, Electron lifetime, dE/dx
- Debugged & deployed REST-API to read Slow Controls data

Outlook

- Deploy HSF-recommended Conditions Database (See Paul's talk for details)
- Adapt existing conditions data to new run-indexed schema
 - Construct payloads & update user-modules to handle them


Thank you for your attention!

Questions?

Common Interface - Example

Example of a common interface for the two calibrations mentioned previously:

'Conditions Database' (Fermilab)

- 2 kinds of calibration, 4 tables in DB (there are more):
 - Electron lifetime
 - dQ/dx YZ
 - dQ/dx X
 - dQ/dx normalization

DUNE Conditions Database

Tables in namespace: pdunesp

Go to namespace:	pdunesp	÷]	Go

Name	Snapshots	Plot data
pdunesp.adcgain	<u>0</u>	<u>plot</u>
pdunesp.channel_status	<u>0</u>	<u>plot</u>
pdunesp.distcorrnorm	<u>13</u>	<u>plot</u>
pdunesp.distcorrx	<u>36</u>	<u>plot</u>
pdunesp.distcorryz	<u>61</u>	<u>plot</u>
pdunesp.gain	<u>0</u>	<u>plot</u>
pdunesp.lifetime_purmon	<u>3</u>	<u>plot</u>
pdunesp.pedestals	<u>0</u>	<u>plot</u>
pdunesp.wwu_test	<u>2</u>	<u>plot</u>

DB content also stored here: /dune/data/users/wwu/protodune/database/

dunesw accesses data via http service:

DBWeb query: https://dbdata0vm.fnal.gov:9443/dune_con_prod/app/get? table=pdunesp.lifetime_purmon&type=data&tag=v1.1&t0=1539711086&t1=1539883886&columns=center,low,high Got 3 rows from database run: 5387 ; subrun: 1 ; event: 3 evttime: 1539797486 fLifetime: 17518.348506 [us]

from logfiles when running reconstruction on raw data

Content of 'Conditions Database' (Run1)

- Lifetime Table: 107 rows (4 float cols: timestamp, low, center, high)
 - Granularity: twice per day, 3 channels each
 - Versions: 2
- dQ/dx X Table: 39,728 rows, 6 cols: channel, tv, x, dx, shape, shape_err
 - Granularity: once per run number, 432 channels per run (5cm)
 - Versions: 4
- dQ/dx YZ Table: 6,197,659 rows, 8 cols: channel, tv, y, dy, z, dz, corr, corr_err
 - Granularity: once per run number, 100080 channels per run (5cmx5cm)
 - Versions: 4
 - dQ/dx Norm Table: 276 rows, 4 cols: channel, tv, norm, norm_err
 - Granularity: once per run number, 3 channels per run
 - Versions: 4

350 MB (as .csv)