Updates on 1 GeV beam π^+ -Ar inclusive cross section measurement

Yinrui Liu Aug. 18, 2022

Sungbin's reweighting

- Fit MC true beam momentum with a Gaus(μ 1, σ 1)
- Fit MC instrumented beam momentum with a Gaus(μ 2, σ 2)
- Derive the required resolution $\sigma r = sqrt(\sigma 2^2 \sigma 1^2)$
- Fit data instrumented beam momentum with a Gaus(μ 3, σ 3)
- Estimate the **data true** beam momentum $\sigma 4 = sqrt(\sigma 3^2 \sigma r^2)$
- Reweight MC true to data true by assigning the factor Gaus(μ 1, σ 4)/Gaus(μ 1, σ 1)
- Sungbin assumes the resolution for data and MC is the same, because "it is only related with scintillation fibre width of beam spectrometer".
- Plan to consider difference in μ as well.

Using Sungbin's parameters weight=Gaus(1007, 68.17)/Gaus(1007, 57.7)

After muon cuts

My reweighting procedure

- Select stopping muon sample in both data and MC as standard candle
- Calculate their front-face KE using reco_trklen
- Reweight MC true beam momentum for the lowest chi2 on KEff_from_trklen for data/MC
- Now we expect data and MC have the same true beam momentum.
- We assume this result from muons can also be applied to pions.

Results

weight=Gaus(1018.18, 71.92)/Gaus(1003.3, 60.9)

After muon cuts

Date 6

Presenter name | Presentation Title

98	
1.9	
66	
28	
11	
4.4	
.5	
10	

Date 7

Presenter name | Presentation Title

An extra smearing

- in resolution.
- Still using the stopping muon sample
 - Fit data instrumented beam momentum with a Gaus(μ 1, σ 1)
 - Fit MC instrumented beam momentum with a Gaus($\mu 2, \sigma 2$)
 - Convolute an extra smearing $\sigma r = sqrt(\sigma 1^2 \sigma 2^2)$ in MC. (Add a random Gaus(0, σr) to MC instrumented beam momentum). Now we should have the same KEff.

• The difference between μ 1 and μ 2 could be due to difference in upstream E loss, but it's not needed since we've aligned the front-face KE.

• The remaining difference in beam instrumented momentum σ could be due to data/MC difference

Results

weight=Gaus(1018.18, 71.92)/Gaus(1003.3, 60.9), and an extra smearing Gaus(0,17.8) in MC beam_inst_P

After muon cuts

Stopping beam muon sample

- BeamQualityCut && Michel_score > 0.6
- Ratio = trklen / RangeFromKE(Eff)

Select Ratio > 0.9 as stopping muon sample

16 Date

Presenter name | Presentation Title

