1 GeV/c Proton-argon Inelastic Cross-section Update

- Update on KE systematics
-Update on improving inelastic event selection

Heng-Ye Liao
ProtoDUNE hadron-argon XS measurements
August 25, 2022

KANsAs State
U N I V E R S I T Y
黄 Fermilab
Neutrino PLATFORM

KE at TPC FF

- Ratio between $\mathrm{KE}(\mathrm{fit})$ and $\mathrm{KE}_{\text {beam }}-\Delta \mathrm{E}$ around one showing that good assumption
$-\Delta \mathrm{E}$ is derived using the scanning method with KE (fit) on stopping protons

Reconstructed KE

- Good KE $\mathrm{FF}_{\text {(reco) }}$ for both data and MC

KE at Track End (Reco. Inelastic Scatters)

Good KE(reco) at track end for inelastic-scattering protons KE $_{\text {bb }}$ has a better reco performance

KE at Track End (Reco. Elastic Scatters)

$\rightarrow \mathrm{KE}_{\text {calo }}$ has a better resolution than $\mathrm{KE}_{\text {bb }}$

- Bad $\mathrm{KE}_{\mathrm{bb}}$ implied that reco track length has room for improvement (since $\mathrm{KE}_{\mathrm{ff}}$ is well-reconstructed)

Range: Reco vs Fit (Stopping Protons)

- Minor correction on reconstructed range

Range: Reco vs Truth

-A bit surprise to see no improvement on $\mathrm{KE}_{\mathrm{bb}}$ with range-correction

Range: Reco vs Truth

- $\mathrm{KE}_{\text {bb }}$ has improved resolution using $\mathrm{KE}_{\text {FF }}($ truth $)$ \& Range(truth)

True Elastic-Scattering Protons

Reconstructed $\mathrm{KE}_{\text {fF }}$ vs $\mathrm{KE}_{\text {FF }}$ (Truth):

Additional correction needed?

Decision Tree using LightGBM

Validation Set with BDT Cut

-LightGBM always have a better performance that XGBoost but with much slower training time (~16 min.)

Selected Inelastic Events: Signal \& Background

- Will be hard to cut out remaining backgrounds using current observables
-We do have change to remove more backgrounds by adding more energy-related observables (i.e. $\mathrm{KE}_{\mathrm{bb}}, \mathrm{KE}_{\mathrm{ff}}, \mathrm{KE}_{\text {calo }}, \ldots$)

