
Parsl Integration in ATLAS

12th Oct 2022
HEP-CCE All-Hands Meeting

Tadashi Maeno (BNL)

2

Needs for Distributed Heterogeneous Computing in ATLAS
➢ Distributed = Geographically distributed != Multi-node/process
➢ Most users love local resources, but have to go to remote

providers when enough or suitable resources/services are
locally unavailable

➢ A zoo of resource/service providers distributed worldwide with
various benefits and constraints

– The WLCG grid, commercial cloud resource/service providers,
High-performance computing (HPC) and Leading Computing
Facilities (LCFs), volunteer computing, Platform-as-a-Service
(PaaS), Function-as-a-Service (FaaS), …

➢ Complex and emerging workflows
– Various resources/services even in a single workflow
– To leverage an optimal provider for each part of the workflow

2

University, Lab, Campus, …

A Simple Usecase with Multiple Remote Providers

3

➢ A user has a workflow to perform physics analysis on
Monte-Carlo (MC) samples produced with a Machine
Learning (ML) model

– Three tasks in the workflow
• ML training, MC production, and Analysis
• Each task could have different resource/service

requirements
➢ The user happens to have

– Allocation at a LCF where huge GPU resources are available
– Approval from the experiment collaboration to use the grid
– Credits for an analysis platform on a cloud service

➢ The user decided to run ML training at LCF, MC production
on the grid, and Analysis on the cloud service

– Three remote providers: LCF, the grid, and the cloud
service

ML training MC production

ML model

Analysis

MC Products

Integration of Remote Provider 1/3

4

➢ Traditional batch-like access to remote
resources/services

– The user describes a workload in a file
– A remote gateway service authenticates the user to

receive the file from the user
– The gateway service feeds the file to a workload

scheduler to process the workload on the computing
resources behind

– Outputs are delivered to the user somehow
➢ Gateway service: HTCondor Computing Element (CE),

ARC CE, Kubernetes API service, …

submit

Local
Scheduler

CPU/GPU
Cluster

feed
execute

Gateway

Data Storage

read/write
return

Workload

5

➢ Traditional interactive access to remote
resources/services

– A remote gateway service authenticates the user to give
an interactive prompt

– The user submits a workload to a workload scheduler from
the prompt

– The user sees outputs in data storage from the prompt
➢ Gateway service: sshd, jupyter hub, AI platforms, …

return

access

Prompt
Local

Scheduler

Data Storage

CPU/GPU
Cluster

submit
execute

Gateway

read/write

Integration of Remote Provider 2/3

Workload

6

➢ In ATLAS, central workload pool + delegated resource manager
– The user submits workflows to the central workload pool where

workflows are decomposed to smaller workload entities (tasks
and jobs)

– The delegated resource manager (Harvester) accesses to
remote providers on behalf of users using common or user’s
credentials through plugins applicable for those providers

• ~ One plugin for each provider
➢ Advantages

– Isolation between the user and remote providers
– Centrally managed fair-share and priorities among multiple users
– Workload routing based on fine-grained requirements and

central knowledge of provider’s characteristics and availabilities

Prompt
Local

Scheduler
CPU/GPU

Cluster

submit
execute

Gateway

Integration of Remote Provider 3/3

Local
Scheduler CPU/GPU

Cluster

feed
execute

Gateway

fetch

submit

Workload
Pool

Delegated
Resource
Manager

(Harvester) Plugins

Schedulers in Resource/Service Providers

7

➢ Traditional batch systems
– HTCondor, Slurm, Pbs, Torque, …
– Many academic institutes including LCFs

➢ Kubernetes-based schedulers
– Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes

Service (EKS), Azure Kubernetes Service (AKS), …
– De-facto standard available in many cloud services
– The entire job or the entrypoint of the job to be

containerized
– Considerable cost difference between spot and on-demand

instances
➢ Multi-node software

– Dask, Horovod, Ray, …
– Application-level resource scheduling

➢ PaaS and FaaS
– Google AI, Amazon ML service, REANA, funcX, ServiceX, …
– Platforms optimized for specific workloads

• Very powerful for particular usecases
• Not for all types of workloads, not straightforward to port

existing workloads

Possible Integration of Parsl in ATLAS

8

➢ Parsl-based workload in a workflow
– E.g. MC production → Parsl-based Analysis

➢ funcX as a gateway to allow users to run parsl-based
workloads at Facility

➢ Harvester plugin to talk to funcX

Facility

funcX

Storage A

Storage B

Results

Gateway

Workload
Pool

Harvester

Parsl-based
task

MC task

MC jobs

Parsl

MC

MC samples

Results

Parsl job

submit

fetch

transfer

upload

download

Grid plugin

funcX plugin

Data
transfer
service

Workflow

