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Why do we spend time arguing about
attenuation in the fridge?

« During commissioning, we spend a lot of time installing
cryogenic attenuators at multiple fridge stages. This is
mechanically fussy and may feel counterintuitive



https://quantummicrowave.com/browse-products/millimeter-wave-products/cryogenic-components/cryogenic-attenuators/

Start with a thought experiment.
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e Thermal activity of charge carriers —> measurable current flow
e Connection to thermal radiation emphasized by Dicke in above paper.

e Equipartition theorem leads to:
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And in the low-frequency limit, lim <E> = kT
hvLkT




Distinguishing coherent and thermal photon noise in a circuit QED system
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Wq/2m =4.71GHz, 17 = 35—90 us and 1ogcho = 4U us 3.
Fig. 4a shows the spin-locking noise spectroscopy results,
which again demonstrate the characteristic factor of 2
difference between the HWHMs of injected coherent and
thermal photons. We also found that the spectrum mea-
sured without added noise (blue) has a -3dB point con-
sistent with thermal photon noise. Therefore, we sus-
pected that thermal radiation from higher-temperature
stages in the DR were responsible for the residual cavity
photons and the resulting dephasing. By measuring the
dependence of the dephasing rate on the average number
of engineered thermal-noise photons, we extrapolated the
average residual thermal photon number in the absence of
externally applied noise to be around 0.006, correspond-
ing to an 80 mK equilibrium temperature [8]. During a
subsequent thermal-cycling of the dilution fridge, we in-
creased the attenuation at the mixing chamber (20 mK)
from 23dB to 43dB in order to reduce the thermal pho-

tons reaching the cavity (see details in supplement [34]).
This modification significantly increased Thgcn, to 80 us
(Fig. 4b), while 77 did not change. The new attenuator
configuration effectively suppresses the residual thermal
photons in our cavity to 72<0.0006 [34], ten times lower
than the previous level. This corresponds to an equiva-
lent equilibrium temperature of 55 mK. Due to temporal
spread of coherence times and measurement uncertainty,
we could not confirm a lower bound, though measure-
ments of the excited-state population of several qubits
tested in the same dilution fridge found an effective tem-
perature of 35 mK [35].

To conclude, we developed a spin-locking (77,) tech-
nique for performing non-classical noise spectroscopy
and demonstrated it using engineered photon noise
applied to a superconducting circuit QED system. The
measured noise spectra were used to distinguish between
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Experimental payloads see thermal
photons from each fridge stage.

A" in this context is the
attenuation at a specific fridge
stage.




Noise contributions with and without
added attenuation:
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We've used Eccosorb CR-110.

Thanks, G. Spahn (NWU)

Insertion Loss (dB)

What’s a good, broadband IR absorber?
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Quantum Microwave.

makes a version of this

too.
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https://www.laird.com/products/microwave-absorbers/injection-molded-machined-cast-liquids-and-microwave-absorbing-thermoplastic/eccosorb-cr
https://quantummicrowave.com/wp-content/uploads/2022/07/QMC-CRYOIRF-001MF-2.pdf
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Broadband IR absorbing filters “exis :

s

* G. Spahn & N. Kurinsky made a batch of these recently.

« Rumor: well-thermalized commercial filters are on their
way...

* Photo credit; S. Lewis



S21 measurements of selected filters
(G. Spahn)
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Parting Thoughts

 For the 4-qubit UW package in NEXUS, we were given a spec of \< |
reducing charge noise to 2 100 pC. '¢

* Your experiment may have different requirements, neceSS|tat|ng
a different arrangement of attenuators.

* This also motivates serious thought about how to thermalize the
various components in your fridge! Magnetic shields, e.qg.
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References for those interested

* https://bingweb.binghamton.edu/~suzuki/Math-Physics/
_N10S_Jphnson-Nyquist_noise.pdf

* hitps://123.physics.ucdavis.edu/week_ 2 files/
Johnson_noise_intro.pdf

* https://wiki.physics.wisc.edu/ObsCos/images/c/c8/
Dicke Detection_of Thermal Radiation_ RS| 1946.pdf

* hitps://arxiv.org/pdf/1801.00467.pdf
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