


Direct detection prospects
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IMHO, COUPP-SOO (or its equivalent) is the “ulhmafe DM detector
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COUPP: not your daddy's bubble chamber:

Conventional BC operation
(high superheat, MIP sensitive) Low degree of superheat, sensitive to nuclear recoils only

Neutron WIMP (yeah, right)

ultra-clean BC: Bolte et al., NIM A577 (2007) 569
Science 319 (2008) 933, Phys. Rev. Lett. 106 (2011) 021303




COUPP approach to WIMP detection:

® Detection of single bubbles induced by high-dE/dx
nuclear recoils in heavy liquid bubble chambers

® (10710 rejection factor for MIPs. INTRINSIC (no data cuts)

® Scalability: large masses easily monitored (built-in
“amplification”). Choice of three triggers: pressure, acoustic,
motion (video))

® Revisit an old detector technology with improvements
leading to extended (unlimited?) stability (u/tra-clean BC)

® cxcellent sensitivity to both SD and SI couplings (CF,I)

® Target fluid can be replaced (e.g., C3Fg, C4Fo, CF3BI).
Useful for separation between n- and WIMP-recoils and
pinpointing WIMP in SUSY parameter space.

® High spatial granularity = additional n rejection mechanism

® | ow cost, room temperature operation, safe chemistry (fire-
extinguishing industrial refrigerants), moderate pressures (<200

psig)

o Single concentration: reducing or rejecting a-emitters in
fluids to levels already achieved elsewhere (~10-7) will lead to
complete probing of SUSY models

Seitz model of bubble nucleation
(classical BC theory):
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COUPP approach to WIMP detection:

® Detection of single bubbles induced by high-dE/dx
nuclear recoils in heavy liquid bubble chambers

® (10719 rejection factor for MIPs. INTRINSIC (no data cuts)

® Scalability: large masses easily monitored (built-in
“amplification”). Choice of three triggers: pressure, acoustic,
motion (video))

® Revisit an old detector technology with improvements
leading to extended (unlimited?) stability (u/tra-clean BC)

® Etxcellent sensitivity to both SD and SI couplings (CF,I)

® Target fluid can be replaced (e.g., C3Fg C4F)o, CF3Br).
Useful for separation between n- and WIMP-recoils and
pinpointing WIMP in SUSY parameter space.

® High spatial granularity = additional n rejection mechanism

® | ow cost, room temperature operation, safe chemistry (fire-
extinguishing industrial refrigerants), moderate pressures (<200

psig)

o Single concentration: reducing or rejecting a-emitters in
fluids to levels already achieved elsewhere (~10-7) will lead to
complete probing of SUSY models

An old precept: attack on both fronts
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Baltz & Gondolo, THEP 0410:052,2004. (WMAP-II update)

SD SUSY space harder to get to, but predictions are more
robust and phase-space more compact. Worth the effort.
(astro-ph/0001511, 0509269, and refs. therein)



E-961 progress: gamma and neutron calibrations
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Neutron counts/7.5mV/h/g

Listening to particles (yes, listening)

Glaser (1955)

In order to see events more interesting than muons
passing straight through the chamber, we took advan-
tage of the violence of the eruption which produces an
audible “plink” at each event. A General Electric
variable-reluctance phonograph pickup was mounted

with its stylus pressing against the wall of the chamber.

Vibration signals occurring during the quiescent period
after the expansion were allowed to trigger the lights
and take pictures. In this way we saw tracks of particles
passing through the chamber in various directions,

Martynyuk & Smirnova (1991)

The initial pressure in the volume V depends on the
energy transmitted by the particle to that volume. Conse-
quently, the characteristics of the acoustic pulse depend on
the parameters of the particle responsible for formation of the
bubble...

The parameters of these pulses must depend strongly on the
characteristics of the particle.

PICASSO collab. (2009)
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F. Aubin et al., New J. Phys 10 (2008) 103017



V for piezos, arbitrary for veto

E-961 progress: acoustic alpha - nuclear recoil discrimination

Phys. Rev. Lett. 106 (2011) 021303 Algha
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We observe two distinct families of single bubble bulk events in a 4 kg chamber:

e Discrimination increases with frequency, as expected.
e We have a handle on which is which (Rn time-correlated pairs following injection, S-AmBe calibrations, NUMI-beam events).

e Polishing off the method, but potential for high discrimination against a5 is clear.

e Challenge in obtaining same discrimination in the 60kg device: increasing sensors to 24, also their bandwidth (IUSB group)

A zero-background experiment soon?
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COUPP progress: acoustic alpha -
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2011 COUPP-4 runs at SNOLAB

We have crossed the Rubicon:
Dark Matter experiments from
now on to produce their own
“"WIMPs"

WIMP
searches: a
quixotic
fight against
backgrounds

Dominant sources:
Po-210 and U, Th in PZT transducers

COUPP'S dubious distinction: and inspection windows. Replacement accomplished.
first DM experiment to see (a,n) neutrons




Six-month screening & simulation campaign

(leading to factor >200 improvement to present (o,n) activity)
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Calibrations: the importance of accounting for uncertainty.

At cut removes
events
anomalously
clumped in time
(no clumping
observed at

15keV threshold.

No good present
hypothesis -nor
tremendous
significance-)

Not a simulation:

based on
measurement of
environmental
gamma flux at
position of CF3I,
and of gamma
rejection factor.

We presently cannot dlshnqulgrp between t

event rate (cts/kg/day)

DM data w/o At cut
/DM data w/ At cut
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three possibilities (for low-E recoils).
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= Other Materials - s.f./(c1,n)
= Rock - s.f./(a,n) Present
Cosmogenic — (u,n) neutron
background
(two methods of

estimation
agreeing)

Next 4 kg run
expectation

(further piezo
purification in
progress,
expected
additional x25
reduction for
60kg chamber)

Rational solution: design a relevant calibration. In the mean time, account for uncertainty.



Calibrations: the importance of accounting for uncertainty.
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Calibrations: the importance of accounting for uncertainty.
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dedicated Y-88/Be calibrations in progress
(monochromatic low energy 152 keV neutrons)
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Calibrations: the importance of accounting for uncertainty.
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Calibrations: the importance of accounting for uncertainty.

CIRTE @ FNAL
(COUPP Iodine Recoil Threshold Experiment)

Goal: isolate response to low-energy (~20 keV) iodine
recoils using a pion beam and silicon trackers.

While theory predicts an optimal response to I recoils
due to their large dE/dx, this is an important test
before claiming best spin-independent sensitivity.

Telescope trigger
with reconstructed track
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COUPP-60 milestones

COUPP-60 @ NUMI gallery (300 mwe)

I

- NN R—— NRPR— T | l‘ 1,1’ nt'ri |“1“".‘1r f"”‘m’ﬂhh\)‘f“w\ I

MH' j ML. yl'l‘ r» M ’hJ WVMWAW,\M ;\‘t

WWWM* “[“‘YLW P*NV‘\V‘{ \ "\M*"’: \'Wl'h

-8 -6 -4 -2 0 2 4 & 8

ms

Not done with occasional
surprises...

(FNAL provides excellent
safety investigation/prevention
of incidents)

e Successful commissioning of new pressure
control hardware, PLC, DAQ and
purification/fluid handling systems.

e Demonstration of acoustic discrimination
against alphas in large chamber.

e HOWEVER: CF3I initially reacted with
impurities and (uncontrolled or excessive)
illumination during fill -> photolysis. High
bubble nucleation rate at CF31/H20
interface was also observed.

e Neither effect observed previously nor in

one year of 4kg operation at SNOlab.

e Other minor glitches identified
(illumination uniformity & intensity, frame-
rate, image resolution)

e After improved chemical purification and
illumination: 2 months of successful data-
taking at MINOS in the absence of
observable darkening + factor 10 reduction
in interface nucleation rate.

eCOUP-60 is ready for SNOLAB
(installation summer 2012)




(intentional)
photolysis of CF3I

I\ni’rial darkening after 20d

COUPP-60 milestones

Absence of measurable
darkening after 50d

e Successful commissioning of new pressure
control hardware, PLC, DAQ and
purification/fluid handling systems.

e Demonstration of acoustic discrimination
against alphas in large chamber.

e HOWEVER: CF3I initially reacted with
impurities and (uncontrolled or excessive)
illumination during fill -> photolysis. High
bubble nucleation rate at CF31/H20
interface was also observed.

e Neither effect observed previously nor in
one year of 4kg operation at SNOlab.

e Other minor glitches identified
(illumination uniformity & intensity, frame-
rate, image resolution)

e After improved chemical purification and
illumination: 2 months of successful data-
taking at MINOS in the absence of
observable darkening + factor 10 reduction
in interface nucleation rate.

eCOUP-60 is ready for SNOLAB
(installation summer 2012)
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e Successful commissioning of new pressure
control hardware, PLC, DAQ and
purification/fluid handling systems.

e Demonstration of acoustic discrimination
against alphas in large chamber.

e HOWEVER: CF3I initially reacted with
impurities and (uncontrolled or excessive)
illumination during fill -> photolysis. High
bubble nucleation rate at CF31/H20
interface was also observed.

e Neither effect observed previously nor in
one year of 4kg operation at SNOlab.

e Other minor glitches identified
(illumination uniformity & intensity, frame-
rate, image resolution)

e After improved chemical purification and
illumination: 2 months of successful data-
taking at MINOS in the absence of
observable darkening + factor 10 reduction

\in interface nucleation rate.

eCOUP-60 is ready for SNOLAB
(installation summer 2012)
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Next physics goals:

Following piezo replacement our modest next physics goal (World Domination) seems within grasp

(Plus we should be able to explore the light-WIMP hypothesis with confidence)
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We expect COUPP to be at the forefront of both SD and SI WIMP searches starting 2012.

COUPP has produced a x10 improvement in sensitivity every other year, starting in 2008: we
are about to accelerate this rate of progress.
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The next step: COUPP-500
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® Programmatic “one step at a time”: we are
ready for this. Dimensions defined by SNOLAB
shaft (60” maximum diameter for outer vessel)

® Most systems to be minimal extensions of
COUPP-60: engineering effort has started.

e Physics reach clearly beyond G-2, however
within DOE “small experiment” category

(<5 MUSD DOE, similar from NSF, after costing
and contingency).

e Extensive bckg simulation effort completed
(includes 2" order sources such as (y,n),
photonuclear, fission fragments, 14C, etc.).

<l event / 500kg-yr expected. Slightly larger
water tank than for C-60 required.

® Must guarantee acoustic rejection capability
in a large chamber: simulation campaign
ongoing (new UPV collaborators).

e Use of alternative fluids (e.g., C,F,)
contemplated (see PRL 99 (2007) 151301).
Surface event dead-time expected is ~6%.

e Hoping to enjoy Picasso collaboration in this
exciting venture!



TAELE I: Abridged COUPP.500kg background estimates for all considered neutron production processes. Muon induced

ncutrons within the water shield /muon veto and (e,n) reactions occuring in the CF,l are considered vetoable (Fige. € and 7).

The next step: COUPP-500

[Neutron source

|Rate

[Single evts/yr

[Multiple evts/yr

onto and diffusion
into outer surface
of quartz jar

100 Bq***Rn/m® in air
S=10, d.=1.0 mm

Rock 4000 =+ 1000 n/m" /d O(10~™) 0o(10~™)
Muon induced from  [5.4 x 10711 n/cm®/s 0.0904 £ 0.0131 0.2544 £ 0.0219
rock
Muon induced from 67.11 £ 1.85p/d 0.493 £ 0.014 1.050 £+ 0.030
shield or detector
U and Thin 0.0504 £+ 0.0030 0.1242 £ 0.0068
detector materials
L, steel only 1ppb #%¥U and 232Th 0.0360 + 0.0026 0.0922 £ 0.0062
L quartz only 10~ 2ppb #**U and #**Th|0.0131 + 0.0012 0.0290 =+ 0.0026
Radon deposition Dep. Rate= 10=%/m/y [0.0198 % 0.0015 0.0415 £ 0.0030

Radon in water tank

$=0.25, 100 Bq/m"” Rn
inner 18500L

(1.83 £0.28) x 10~

(5.17 £ 0.60) x 10~

Radon in heat S=0.25 0.0230 + 0.0021 0.0572 + 0.0052
exchange pipes 100 Bq/m® Rn, 10L
Radon emanation from|A=34.81m” (1.39+0.13) x 10~°[(2.93 £ 0.26) x 10~

quartz and steel

100 xBq/m® Rn

0.0488 ppt **Th
0.0025 ppt *°U

25 uBq/kg ***Rn
25 uBq/kg *'°Pb

Mine dust on 0.01 g/m®, 2.21 m* 0.0127 £ 0.0011 0.0286 + 0.0026
top surfaces 1.11 ppm *3%U
5.56 ppm 2**Th

T (~y,n) "1 4.0 v/cm®[yr > OMeV < 0.0069
*H(y,n)'H 0.057y/m” /s at 2615keV |0.0040 % 0.0004 [0.0044 + 0.0004
other photonuclear <11x107¢
Piezoelectric acoustic |10 ppb 22U 0.0577 £ 0.0031 0.142 + 0.008
transducers 10 ppb #*2Th

L side only 0.1 ppb U 0.0036 % 0.0002 0.0072 % 0.0004

L bottom only 10 Bq/kg *'°Pb 0.0541 + 0.0031 0.134 + 0.008
CFsI U and Th (a,n) |0.0159 ppt 2>°U 1.078 + 0.061 437+0.25

Other radon induced

6mo. deposition on steel

(B0E£05) x 10°°

(2.00£0.12) x 107

backgrounds 92.6pBq/m? in IV
Total 1.84 £ 0.06 6.08 £ 0.25
Total unvetoable 0.268 £+ 0.014 0.667 + 0.025

® Programmatic “one step at a time”: we are
ready for this. Dimensions defined by SNOLAB
shaft (60” maximum diameter for outer vessel)

® Most systems to be minimal extensions of
COUPP-60: engineering effort has started.

e Physics reach clearly beyond G-2, however
within DOE “small experiment” category

(<5 MUSD DOE, similar from NSF, after costing
and contingency).

e Extensive bckg simulation effort completed
(includes 2" order sources such as (y,n),
photonuclear, fission fragments, 14C, etc.).

<1 event / 500kg-yr expected. Slightly larger
water tank than for C-60 required.

® Must guarantee acoustic rejection capability
in a large chamber: simulation campaign
ongoing (new UPV collaborators).

e Use of alternative fluids (e.g., C,F,)
contemplated (see PRL 99 (2007) 151301).
Surface event dead-time expected is ~6%.

e Hoping to enjoy Picasso collaboration in this
exciting venture!



The next step: COUPP-500

COMSOL acoustic simulations (generation, transport, detection)

Transfer Function

® Programmatic “one step at a time”: we are
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—ready for this. Dimensions defined by SNOLAB

haft (60" maximum diameter for outer vessel)

Most systems to be minimal extensions of
LOUPP-60: engineering effort has started.

+ Physics reach clearly beyond G-2, however
ithin DOE “small experiment” category
X:S MUSD DOE, similar from NSF, after costing

1> and contingency).

e Extensive bckg simulation effort completed
(includes 2" order sources such as (y,n),
photonuclear, fission fragments, 14C, etc.).

34},.2;‘@.“0%}2 event / 500kg-yr expected. Slightly larger

water tank than for C-60 required.

in a large chamber: simulation campaign
ongoing (new UPV collaborators).

e Use of alternative fluids (e.g., C,F,,)

contemplated (see PRL 99 (2007) 151301).
Surface event dead-time expected is ~6%.
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The next step: COUPP-500

FY13

* Finish mechanical design. all major components
* Order outer vessel

* Prototype hydraulic system

* Test pressure control at full scale

* First tests of 3rd generation acoustic sensors
* Select SNOLAB installation location

FY14 * Water tank construction at SNOLAB
* Inner vessel prototype testing at Fermilab
* High purity fluid system construction

* Control system, DAQ testing

FY15

* Construction of final inner vessel
* Installation of all equipment at SNOLAB
* Commissioning

Table 4: Milestones towards the completion of COUPP-500.

® Programmatic “one step at a time”: we are
ready for this. Dimensions defined by SNOLAB
shaft (60” maximum diameter for outer vessel)

® Most systems to be minimal extensions of
COUPP-60: engineering effort has started.

e Physics reach clearly beyond G-2, however
within DOE “small experiment” category

(<5 MUSD DOE, similar from NSF, after costing
and contingency).

e Extensive bckg simulation effort completed
(includes 2" order sources such as (y,n),
photonuclear, fission fragments, 14C, etc.).

<1 event / 500kg-yr expected. Slightly larger
water tank than for C-60 required.

® Must guarantee acoustic rejection capability
in a large chamber: simulation campaign
ongoing (new UPV collaborators).

e Use of alternative fluids (e.g., C,F,)
contemplated (see PRL 99 (2007) 151301).
Surface event dead-time expected is ~6%.

e Hoping to enjoy Picasso collaboration in this
exciting venture!
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E-961 progress: Rn control

2-kg Chamber 2008 Data

Old Chamber Design * Radon greatly reduced by replacement of

Viton Viton O-rings with metal seal
rubber iton O-rings with metal seals.
O-ring \ * We begin to see backgrounds from cosmic-
\ / ray coincident neutrons
metal chamber after refill (Rn countermeasures)
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E-961 progress: fluid purification & handling

“like dissolves like”
U & Th salts readily dissolve in H,0,
refrigerants do not. Solubility of U,Th

in CF,I expected to be very small
(a situation similar to mineral oil-based v dets.)

Teas diagram:

polarity

" g P
ydrogen S
bonds ?o
_ 3¢ 5 8
[0 — on ¥
§ 252 _ =f¥ag
® occ o 2* ° %8
e O M Qo . . .
e 57 58 First serious attempt at fluid
° T 5 = . . . .. .
n-decanol —® ¢¢& & handling/purification, commissioned during
chloroform e e  —o\C318 NUMI 60-Kqa fll
benzene ~n hexane £ \ g nit.

fy dispetsion : So far we have only profited from SNOlab

compamant water availability (to reach already <5 a-like ev/kg-day)
Fractional cohesion parameters

for refrigerants and common solvants

Lol We foresee most future effort on H,0 purification.



E-961 progress: wall events a thing of the past

Natural Quartz: 0.8/day/cm?
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® We detected a ~50 ppb U,Th contamination in regular quartz used in early chambers.

¢ Alpha emission from surface was independently confirmed, at the same rate as wall evts.
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e New chambers now featuring synthetic silica (~3 orders of magnitude lower U,Th content)
e New rate will allow us to reach 1 fon without any live-time penalty.

e Synthetic silica vessels available up to 250kg CF3I: extrapolation to “500kg part of our

DUSEL S4 charge. UPDATE: vessels up to >1 m3® may be readily available.



