CMB and Dark Matter Detector initiatives at ANL

Clarence Chang FCPA/KICP/ANL Retreat June 5, 2012 Fermilab – Kuehn Barn

The South Pole Telescope

10-m dish gives 1-arcmin resolution at 2 mm

Located at the South Pole

WMAP

13x smaller beam (13' vs 1')
17x deeper (300 uK-arcmin vs 18 uK-arcmin)

CMB Power Spectrum: WMAP and SPT

Science Highlight 1: Searching for new particles

Keisler et al 2011, ApJ, 743, 28

 $N_{\rm eff}$ = 3.86 ± 0.42 (SPT+WMAP+H₀+BAO)

Science Highlight 2: Measuring neutrino mass

Benson et al 2011, arXiv: 1112.5435

Science Highlight 3: Probing Dark Energy

Benson et al 2011, arXiv: 1112.5435

w = -0.97 + /-0.06

13x smaller beam (13' vs 1')
17x deeper (300 uK-arcmin vs 18 uK-arcmin)

				230 deg ² (9% of SPT Survey)
	Area (deg²)	Beamsize (arcmin)	Map Noise (uK-arcmin)	
WMAP	30,000	13	300	
Planck	30,000	5	45	
SPT	2500	1	18	

				230 deg ² (9% of SPT Survey)
	Area (deg²)	Beamsize (arcmin)	Map Noise (uK-arcmin)	
WMAP	30,000	13	300	
Planck	30,000	5	45	
SPT	2500	1	18	
SPTpol	600	1	5	

		Area	Beamsize	Map Noise	230 deg ² (9% of SPT Survey)
		(deg²)	(arcmin)	(uK-arcmin)	
	WMAP	30,000	13	300	
	Planck	30,000	5	45	
	SPT	2500	1	18	
	SPTpol	600	1	5	10x
	SPT-3G	2500	1	2 ←	deeper
•					than SPT!

CMB Lensing Power Spectrum

- CMB LensingDetection Significance
 - -SPT-SZ=30-s
 - -Planck=30-s
 - -SPT-3G=150-s
- SPT-3G will measure individual lensing modes out to ell~1000 (Planck to ell~60)
- Cross-correlating with
 DES will measure galaxy
 bias to better than ~1%

Credit: G. Holder

SPT-3G: Cluster Survey

- -10x increase in number of clusters over SPT
 - 4000 clusters at 99% purity threshold
- -Could improve DES dark energy figure of merit by ~4 by calibrating scatter in richness-mass relation (Wu et al. 2010)
- -CMB-cluster lensing should provide a 3% cluster mass calibration (per 4000 clusters)
 - competitive with mass calibration from stacked weak-lensing (Rozo et al. 2011)

Credit: B. Benson

Testing Gravity on Large-scales

kSZ Pairwise Velocity Signal

Galaxy clusters tend to fall towards each other (w.r.t. Hubble flow). For a given pair, the high-z (low-z) cluster tends to move towards (away from) us => differential CMB Blue Shift **Red Shift** signal from kSZ effect. Observer

Project a **30-40-sigma** detection of the pairwise kSZ signal for SPT-3G and a DES-like cluster sample with photoz errors.

Comoving Separation Between Clusters (Mpc)

This provides a novel probe of gravity on ~50-200 Mpc scales and competitively constrains modified theories of gravity (f(R)/ chameleon and DGP) on very large length scales.

Credit: R. Keisler

17

Projected E-mode Power Spectrum

Credit: T. Crawford

Projected B-mode Power Spectrum

- -Planck realistically will not detect B-modes
- -SPTpol will make pioneering B-mode measurements
- -SPT-3G will be deep enough to:
 - improve neutrino
 mass constraints (over Planck)
 - "de-lens" at largescales and improve "r" constraint

Credit: T. Crawford

SPT-3G: Parameter Constraints

blue=big improvment green=decent improvement

Dataset	Cosmological parameter constraints								
	$\sigma(\Omega_b h^2)$	$\sigma(\Omega_c h^2)$	$\sigma(A_s)$	$\sigma(n_s)$	$\sigma(h)$	$\sigma(au)$	$\sigma(N_{ m eff})$	$\sigma(\Sigma m_ u)$	$\sigma(r)$
	$\times 10^4$	$\times 10^3$	$\times 10^{11}$	$\times 10^3$	$\times 10^2$	$\times 10^3$	$\times 10^{1}$	[meV]	$\times 10^2$
Planck	1.93	2.02	5.36	7.07	1.88	4.96	1.39	117	5.72
+ SPT-3G	1.12	1.29	4.24	4.78	1.18	4.94	0.81	75	1.05
Planck + BAO	1.41	2.02	3.53	4.99	0.72	4.93	1.17	72	5.72
+SPT-3G	0.98	1.26	3.16	3.82	0.62	4.88	0.74	51	1.05

- -Scalar-to-tensor constraint of dr=0.01
- -Constrain sum-of neutrino masses $d(Sm_n)=0.05$ eV
- -Constrain number of relativistic species to $d(N_{\rm eff})$ =0.07
 - -factor of 1.9x improvement, break degeneracies with other cosmological parameters

Credit: C. Reichardt, G. Holder, G. Simard

Evolution of Detector Focal Planes

2001:ACBAR 16 detectors

2007: SPT 960 detectors

2012: SPTpol ~1600 detectors

ACBAR was the first experiment to make a "background limited" detector, since then we've just been trying to make more of them

2016: SPT-3G ~ 15,200 detectors

Superconducting Detectors at ANL

SPT+DES

Role of multiplexing

2001:ACBAR 16 detectors

> 2007: SPT 960 detectors

Cryogenic detectors - wiring is what matters

2012: SPTpol ~1600 detectors

1x MUX

8x MUX

12x MUX

2016: SPT-3G

~15,200 detectors

64x MUX

SuperCDMS -> 1 ton?

- Future DM direct detection experiments will be ton scale
- bandwidth requirements makes MUXing current SuperCDMS technology is challenging

Beyond SuperCDMS

New Multiplexing technology

- Current MUX operate at 300 kHz 2 MHz (~5 kHz bandwidth per channel)
- Develop high frequency MUX at 1-10 GHz (~1 MHz bandwidth per channel)
 - High speed digital electronics + superconducting microwave resonators
- Makes existing SuperCDMS detector technology scalable to 1-ton
- Broad applications elsewhere eg:
 - Mpixel X-ray micro-calorimeter arrays
 - Mpixel Optical/Near-IR spectrophotometer

