* %0
‘e 00005 .
O ] o,
RO Y 3O
BN g )
Ry
0
. o....o
L 0000 .
® o

Co'rﬁ.putation Institute

SkeletonKey: Simplifying Data and
Software Access for Users

Suchandra Thapa
Computation Institute / University of Chicago

March 12, 2013

www.ci.anl.gov
www.ci.uchicago.edu




Introduction

e What is SkeletonKey?
e How is it used?

e Performance Comparisons
e Conclusion

0OSG AHM G www.ci.anl.gov

www.ci.uchicago.edu




Simplifying Software and Data Access

e A general issue facing Campus Infrastructure providers is
simplifying user access to software and data from
heterogeneous resources, both on and off campus

e Good results at UW-GLOW using the Parrot tool as job
wrapper and a Chirp proxy service for data and software

e Our goal is leverage good solutions, and add value by
further simplifying their use for campus communities

o Specifically want a user-focused tool that encapsulates
complexity so that users get started quickly
— SkeletonKey does this by creating configurable user job

wrappers to correctly use Parrot and Chirp for a given
Campus and/or VO context

0OSG AHM G www.ci.anl.gov

www.ci.uchicago.edu




Simplifying

)

Directly With SkeletonKey

&

I
I
|
|
|
|
I
I
I
|
[
[
I
1 Application
I

I

[

Local Filesystem

HDFS Datanodes

[
-

www.ci.anl.gov

OSG AHM

www.ci.uchicago.edu




How SkeletonKey works (simple!)

e A wrapper function is specified with an easy to
understand configuration file

o SkeletonKey generates a script from the
configuration file to be used in a job manager
and/or grid submit file

— a portable file that can be copied to another system
and run

0SG AHM




Preparations for software or data access

Software Access

Software tarball

A

Create tarball
with application
binaries

0SG AHM

Upload
application
tarball to
webserver

CVMFS access

b 1

Upload software
application to
CVMEFS server

P

Upload CVMFS
repository key to
web server

I

Data access

A

Start Chirp
server to export
directory

P

www.ci.anl.gov
www.ci.uchicago.edu



Typical SkeletonKey workflow

Optionally
Write Run skeleton
configuration file key on file
configuration
tile
Upload
application
tarball to
webserver
Write job manager or grid Job script
submit file that executes job
script
Submit job Jobmanager

submit file

Upload
software and
data to CYMFS

(" Job Execution
or Chirp servers

— Job manager can be
HTCondor, PBS, SGE,
LSF, HTCondor-G, etc.

0OSG AHM MKE\}W www.ci.anl.gov

www.ci.uchicago.edu



Internal workflow on compute node of

the generated job wrapper

‘ B vl 1|

N
/ \
| Webserver

|
| Webserver “

—
N P

Extract ticket and run
application using
parrot

(this happens on the compute node)

www.ci.anl.gov
www.ci.uchicago.edu

0OSG AHM




SkeletonKey configuration

e Uses a ini configuration file
— Widely used so it is probably familiar to users
e Has four sections

- Application section to specify where and how to run
user application

- Directories section to specify data access

- CVMFS section to specify access to CVMEFS repositories

- Parrot section to allow users to specify specific versions
of Parrot to use

e Only Application section is required, the other
sections are optional

0OSG AHM (= www.ci.anl.gov

www.ci.uchicago.edu



Configuring Data Access

o Start with simple Read/Write storage access

[Directories]
export base = /export/local
read = my_input _data &

—

Location of
directory Chirp
exports

write = my output data

[Application]
location =
script = /usr/bin/hostname
arguments =

0SG AHM

T~

Application will
have read
access to this

Application will have
read and write access
to this

Important: directories
given in both read and
write settings are
relative to directory in
export_base

www.ci.anl.gov

www.ci.uchicago.edu



Specifying application execution

e Specifying which application to run and passing
arguments to applications

[Directories]
export base = /export/local
read = my input data URL to application tarball

write = my output data /
[Application]
location = http://my.domain/~user/myapp.tar.gz

script = ./myapp/run.sh e-__________-

arguments = .
Gives the command to run
\ Arguments to pass to script or binary, can also

give arguments in job manager or grid submit
file

0OSG AHM G www.ci.anl.gov

www.ci.uchicago.edu



Adding remote application access

e Slightly more advanced version with application

access over CVMEFS
CVMES repository

[Directories] name
export base = /directory/to/share
write = my_ input _data . ,
read = my output data Options for repository access
[CVMFS]

repol = cvmfs.repo.name
repol options = url=http://repo.location/repo _path/,pubkey=http://
repo.key/location,proxies=squid proxy:3128

repol key = http://repo.key/ngation

Location of CVMFS key
[Application]

location = http://my.host.name/~user/my_ app.tar.gz

script = ./my_app/run_app.sh

arguments =

www.ci.anl.gov

0SG AHM

www.ci.uchicago.edu




universe = vanilla

executable = ./job_script.sh ¢

arguments = $(Process)

notification = Error

input =

output = /tmp/my_job.out.$(Process)
error = /tmp/my_job.err.$(Process)
log = /tmp/my_job.log

should _transfer_files = YES

when_to transfer_output = ON_EXIT

queue 40

0SG AHM

Shell script generated by
SkeletonKey

Additional arguments
passed to user script

www.ci.anl.gov

www.ci.uchicago.edu




What’s the performance?

e We were interested in determining what the
overheads were to remote software access to
see how viable this solution would be
— Examined software runtimes when using different

access methods

e Also interested in how Chirp/Parrot affected
data access

— Benchmarked streaming reads and writes to give
information on this

0SG AHM




Overhead for remote software access

e Compared the performance of R and
Mathematica when running from local
filesystem and from CVMFS

Typical application workflow

Hard Drive

Application 4 | €7

SR

Remote Server

J

www.ci.anl.gov

Application

0SG AHM

www.ci.uchicago.edu




Application benchmark setup

e CVMFS server: SL5.5 system running on a VM
with 4GB of RAM and 4 virtual cores with a 1Gb

network connection

e Applications run on the OSG-ITB cluster with 48
job slots on 3 compute nodes with 1Gb
connections. Each slot has 2GB of RAM
available.

0SG AHM




Benchmarking R overheads

e Ris commonly used in several fields to do
statistical analysis.
— We adapted example from a UC3 user
— R script analyzes multi-layer geographical bitmap
data
e Did two comparisons:

— Single invocation of R to analyze 400 layers from a
single file located in scratch space

— Invoked R four times and analyzed 100 layers from a
single file in scratch space during each invocation

0SG AHM




Comparison of R runtimes

Local Access FUSE/CVMFS

sssssssss (single Run)

uoned0AU| 3|8uIS

suonedoAu| a|duniAl

www.ci.anl.gov
www.ci.uchicago.edu

0OSG AHM




R Benchmarks Summarized

e Running R using Parrot/CVMFS takes 371+29s while
running it on local filesystem takes about 333+19s

— Overhead for using Parrot/CVMFS is only about 40s per
invocation in this instance

e Running R multiple times to reduce latency
(through cached copies) reduces overhead but not
much (~7s) in this case

e Using FUSE/CVMEFS gives a lower overhead but it’s
not always desirable to have to get each cluster’s
administrator to change their configuration when
running in a distributed high throughput campus

grid.

0SG AHM




Do other applications have similar

overheads?
e Also looked at Mathematica to see if this overhead
was similar when using other applications

e Used a simple Mathematica script to time integer
factorization of large numbers

e Ran factorization Mathematica twice to see how
caching affects performance

24
/N
24 12 2
AN\ A\
6 4 3 4
A /A
2 3 2 2 2 2

2x3x2x2=24 3x2x2x2=24

0SG AHM




Comparison of Mathematica runtimes

Local Access FUSE/CVMFS

uonedoAUu| 1S414

Suonel’0AU| pUuodaS

www.ci.anl.gov

0OSG AHM

www.ci.uchicago.edu




Mathematica results summarized

e For this benchmark, Parrot/CVMFS performs
fairly well

— 15% slower than using Mathematica on local drive
— Performance slightly better than FUSE/CVMFS but
with much greater variation in performance
e Second run of Mathematica in the same session
results in slightly better performance (~5%) but
not significantly so

0SG AHM




Overheads when accessing data remotely

e Ran tests on two different clusters
e UC3 Chirp server:

— Server with a 10Gb connection to switch ran a Chirp
service to proxy access to three drive RAIDO array

e OSG-ITB Compute cluster:

— Jobs run on OSG-ITB cluster to simulate remote
client connections

— Accessed UC3 storage using the Chirp server as a
proxy
— Nodes have 1Gb connection to switch

0SG AHM




Quantifying remote data access overhead

e Tests designed to look at raw speed of storage
subsystem used and then performance penalty
imposed by access storage remotely

e Ran several tests to do this:

— Bonnie++ tests head server to characterize
performance of RAIDO array

— Read/Write tests on Chirp server accessing RAID
array directly

— Read/Write tests on Chirp server with 64
applications accessing RAID array

0SG AHM




Performance using RAID Array

Read Write

Per Client Read Time with 64 Simultaneous Clients (Local) Per Client Write Time with 64 Simultaneous Clients (Local)

SS90y |B20T

64 simultaneous clients
J | ] reading or writing 10GB each
i SR o T — -, to different files. Local access
clients are running on Chirp
server and accessing RAID
array directly

“Time to write fl (s)

Per Client Write Time with 64 Simultaneous Clients (Chirp)
Per Client Read Time with 64 Simultaneous Clients (Chirp)

dJiyd

of Runs

10

J 1 el e il

r T T 1 T T T T 1
2000 2500 3000 3500 2400 2500 2700 2800 2900 3000 3100

Time to read file (s) Time to write file (5)

www.ci.anl.gov

0SG AHM

www.ci.uchicago.edu




Data Benchmark Conclusions

o Parrot/Chirp did not give an appreciable performance hit
(¥1%) when reading, performance difference a bit larger
(¥12%) when writing but not too large

— Clients took an average of 3012s to read locally vs 3058s to
read file using Parrot/Chirp.

— Client took an average of 2584s to write locally vs 2904s to
write using Parrot/Chirp

— Using Parrot/Chirp compares very well to accessing array
locally

e Aggregate bandwidth was about 180-230 MB/s on writes
and 120-150MB/s on reads

e Bonnie++ tests on RAID array indicated streaming reads
and writes got about 300-350MB/s

— Chirp utilizes ~40-60% of max throughput to array

www.ci.anl.gov

0SG AHM

www.ci.uchicago.edu




Conclusion

o SkeletonKey provides a convenient way to use Chirp
and Parrot to remotely access data and software

e Performance using Parrot/Chirp for both data and
software access within 10% or better on
benchmarks tested

e Provides a viable method to gain opportunistic
access to resources on campus grids and other
distributed high throughput grids

e Future directions:

— Expand to other users and add enhancements based on
user feedback

e Questions?

0SG AHM




Further information

e SkeletonKey:
— Git: https://github.com/DHTC-Tools/UC3/tree/master/skeleton key

— Documentation: https://twiki.grid.iu.edu/bin/view/CampusGrids/
SkeletonKey

e Chirp, Parrot, HDFS

— Douglas Thain and Miron Livny,
Parrot: An Application Environment for Data-Intensive
Computing,Scalable Computing: Practice and Experience, 6(3), pages
9-18, September, 2005.

— Douglas Thain, Christopher Moretti, and Jeffrey Hemmes,
Chirp: A Practical Global Filesystem for Cluster and Grid
Computing,Journal of Grid Computing, 7(1), pages 51-72, March, 2009.
DOI: 10.1007/s10723-008-9100-5

— Patrick Donnelly, Peter Bui, Douglas Thain,
Attaching Cloud Storage to a Campus Grid Using Parrot, Chirp, and
Hadoop ,IEEE International Conference on Cloud Computing Technology
and Science, pages 488-495, November, 2010. DOI: 10.1109/CloudCom.
2010.74

www.ci.anl.gov

0SG AHM

www.ci.uchicago.edu



Acknowledgements

e CCTools team, http://www.nd.edu/~ccl/
e Dan Bradley @ UW-Madison
e Colleagues at UC3:

— Lincoln Bryant, Marco Mambelli, Rob Gardner

0SG AHM




