1 GeV/c Proton-argon Inelastic Cross-section Update

► Update on KE systematics

Heng-Ye Liao ProtoDUNE hadron-argon XS measurements Sep 1, 2022

KE_{ff} with Const E-loss Assumption

- ►KE_{ff}=(KE_{beam}- Δ E)*R, R~1
- ▶ Good reconstruction at KE_{ff} for both data and MC

KE at Track End (Bethe-Bloch)

▶ Good reconstruction at KE_{end} for both data and MC!

KE at Track End (Calo)

► Systematics between data and MC

Proton-Ar Inelastic Cross-section

► Exciting Physics at low energy (KE<100 MeV)

KE at Track End: Method Comparison

Threshold=140 MeV

Best energy reco for inelasticscattering protons. (reco shape=truth shape) Threshold=**70 MeV**

Better energy threshold
Distorted energy spectrum
for inelastic-scattering
protons

Threshold=70 MeV

Better energy threshold Distorted energy spectrum for inelasticscattering protons

KE_{bb} Calibration: Discussion

$$KE = \frac{1}{2} \cdot \left(\frac{KE_1}{\varepsilon_1} + \frac{KE_2}{\varepsilon_2} \right)$$
 OR $KE = \frac{KE_1}{\varepsilon_1} = \frac{KE_2}{\varepsilon_2}$

$$KE_1 = KE_{bb}(R \cdot (KE_{beam} - \Delta E), x)$$

$$KE_2 = KE_{bb}(KE_{fit}, x)$$

x : Range(reco)

$$\varepsilon_{1} = \frac{KE_{1}}{KE(truth)}$$

$$\varepsilon_{2} = \frac{KE_{2}}{KE(truth)}$$

In pure sample to provide KE(truth):

→ Stopping protons & inelastic-scattering protons

KE_{bb} Ratio v.s. Track Length: Constant E-loss Assumption

► Const. E-loss assumption shows good reco at short track length; bad at long track length (smearing)

KE_{bb} Ratio v.s. Track Length: KE_{FIT}

►KE_{bb} (Fit) for inelastic-scattering protons can be corrected

KE_{bb} ratio: KE_{bb}(Fit)/KE_{bb}(const E-loss)

►Use KE(fit) to calculate energy and apply correction on inelastic-scattering protons, i.e, use KE_{bb}(const E-loss) to calibrate KE_{bb}(Fit)

