Updates on 1 GeV beam π^{+}-Ar inclusive cross section measurement

Yinrui Liu
Sept. 1, 2022

After full selections (including APA3 cut)

Initial and interaction E comparisons of MC and real data

After full selections (including APA3 cut)

Wider bins (50 MeV)

MC true KE

MC KE calculated by true length

MC reco KE

MC KE calculated by reco length

Data reco KE

Data KE calculated by reco length

Difference in upstream E loss
Gaus(-9.85, 17.756843) MeV Extra smearing

After full selections (including APA3 cut)

MC beam_inst_P add Gaus(-9.85, 17.756843) MeV

Error propagation

- Jacobian matrix $J=\left(\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}\end{array}\right)$

- Covariance matrix $V=\left(\begin{array}{ccc}\sigma_{11} & \cdots & \sigma_{1 n} \\ \vdots & \ddots & \vdots \\ \sigma_{n 1} & \cdots & \sigma_{n n}\end{array}\right)$
- $V_{f}=J \cdot V_{x} \cdot J^{T}$

Covariance matrix provided by the 3D

unfolding of $\left(N_{\mathrm{ini}}, N_{\mathrm{end}}, N_{\mathrm{int}}\right)$

Error propagation

- $N+1$ is the number of bins (plus one unphysical underflow)
- $A_{(N+1)^{3} \times(N+1)^{3}}$ for the combined variable ($N_{\mathrm{ini}}, N_{\mathrm{end}}, N_{\mathrm{int}}$) is provided by unfolding
- $B_{3(N+1) \times 3(N+1)}$ for $N_{\text {ini }}, N_{\text {end }}$ and $N_{\text {int }}$ e.g. $N_{\text {ini }}=\sum_{N_{\text {end }}, N_{\text {int }}}\left(N_{\text {ini }}, N_{\text {end }}, N_{\text {int }}\right)$
- $C_{2 N \times 2 N}$ for $N_{\text {inc }}$ and $N_{\text {int }}$ (leave out the underflow bin)
- $N_{\mathrm{inc}}(i)=\sum_{j=i}^{N} N_{\mathrm{end}}(j)-\sum_{j=i+1}^{N} N_{\mathrm{ini}}(j)$ or $N_{\mathrm{inc}}(i)=\sum_{j=1}^{i} N_{\mathrm{ini}}(j)-\sum_{j=1}^{i-1} N_{\mathrm{end}}(j)$
- $D_{N \times N}$ for XS: $\sigma=\frac{M_{\mathrm{Ar}}}{\rho N_{A} \Delta E} \frac{d E}{d x} \ln \left(\frac{N_{\mathrm{inc}}}{N_{\mathrm{inc}}-N_{\mathrm{int}}}\right)$

Fake data

3D unfolding 10 iterations

Initial histogram

Interaction histogram

Incident histogram

Fake data

3D unfolding 10 iterations

Correlation matrix for reco XS

Correlation matrix for true XS

Fake data

3D unfolding 200 iterations

Correlation matrix for reco XS

Correlation matrix for true XS

Real data

- After bkg subtraction

Real data

- After unfolding

Back-ups

Definition of sliceIDs
Eini
Eint Eend
SLDimi
Sindend
SID $D_{\text {int }}$

Some notes for error propagation
true $\operatorname{diag}\{\cdots\} \rightarrow \operatorname{diag}[\ldots] \rightarrow$

Some notes for error propagation

$$
\begin{aligned}
& \sigma=\underbrace{\frac{M_{A r}}{N_{A \Delta E}} \frac{d E}{d x}}_{C} \ln \frac{N_{\text {inc }}}{N_{\text {inc }}-N_{\text {int }}} \\
& x s \overbrace{\left(\frac{\partial \sigma}{\partial N_{\text {in }}}\right.}^{\text {Nine }} \overbrace{\frac{\partial r}{\partial N_{\text {int }}}}^{\text {Nit }}) \\
& \frac{\partial \sigma}{\partial N_{\text {inc }}}=c \cdot \frac{N_{\text {inc }}-H_{\text {int }}}{N_{\text {inc }}} \frac{N_{\text {inc }}-N_{\text {int }}-N_{\text {inc }}}{\left(N_{\text {inc }}-N_{\text {int }}\right)^{\lambda}}=c \cdot \frac{-N_{\text {int }}}{N_{\text {inc }}\left(N_{\text {inc }}-N_{\text {inc }}\right)} \\
& \frac{\partial r}{\partial N_{\text {int }}}=c \cdot \frac{N_{\text {iss }}}{N_{\text {inc }}\left(N_{\text {ifc }}-N_{\text {int }}\right)}=c \cdot \frac{1}{N_{\text {inc }}-N_{\text {int }}}
\end{aligned}
$$

RooUnfold print table

Bin	Train Truth	Train Measured	Test Truth	Test Input	Unfolded Output	Error on Unfolding	Diff	Pull
1, 1, 1	11128	1481		1552	12115.8	884.9		
2, 1, 1	0	0		0	0.0	0.0		
3, 1, 1	0	0		0	0.0	0.0		
4, 1, 1	0	0		0	0.0	0.0		
5, 1, 1	0	0		0	0.0	0.0		
6, 1, 1	0	0		0	0.0	0.0		
7, 1, 1	0	0		0	0.0	0.0		
8, 1, 1	0	0		0	0.0	0.0		
9, 1, 1	0	0		0	0.0	0.0		
10, 1, 1	0	0		0	0.0	0.0		
11, 1, 1	0	0		0	0.0	0.0		
1, 2, 1	0	0		0	0.0	0.0		
2, 2, 1	12	2		2	12.0	8.5		
3, 2, 1	0	0		0	0.0	0.0		
4, 2, 1	0	0		0	0.0	0.0		
5, 2, 1	0	0		0	0.0	0.0		
6, 2, 1	0	0		0	0.0	0.0		
7, 2, 1	0	0		0	0.0	0.0		
8, 2, 1	0	0		0	0.0	0.0		
9, 2, 1	0	0		0	0.0	0.0		
10, 2, 1	0	0		0	0.0	0.0		
11, 2, 1	0	0		0	0.0	0.0		
1, 3, 1	0	0		0	0.0	0.0		
2, 3, 1	0	0		0	0.0	0.0		
3, 3, 1	12	0		0	0.0	0.0		
4, 3, 1	0	0		0	0.0	0.0		

