Detection efficiency measurement and operational tests of the X-Arapuca for the first module of DUNE Far Detector

Carmen Palomares, for the DUNE Collaboration September 2022

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Overview

- DUNE: Long-Baseline Neutrino Oscillation Experiment
- First Module of DUNE Far Detector
- Photon-Detection System: X-Arapuca
- Measurement of Absolute X-Arapuca Efficiency
- Massive tests of X-Arapucas for ProtoDUNE-II

DUNE: Long-Baseline Neutrino Experiment

Far Detector LAr-TPC Measurement of Oscillated neutrino beam

Neutrino Travel through the Earth 1300 km

Near Detector Monitoring unoscillated neutrino energy spectra & composition

Muon neutrino beam LBNF Neutrino Beam 1.2 MW beam power → Upgradeable to 2.4 MW

DUNE

Measurement of v_e appearance and v_{μ} disappearance with a wide range energy v_{μ} beam at 1300 km would allow:

- Definitive measurement of neutrino Mass ordering
- Discovery potential for CP violation for wide range of δ_{CP}
- Precise measurement of neutrino mixing parameters

Supernova burst neutrinos and other low energy physics

DUNE Far Detector

SURF Sanford Underground Research Facility Four modules of 10-kt fiducial LAr TPC with integrated photon detection at 4850L of SURF (4300 mwe).

DUNE Far Detector

SURF Sanford Underground Research Facility

Four modules of 10-kt fiducial LAr TPC with integrated photon detection at 4850L of SURF (4300 mwe). High resolution 3-D track reconstruction

1st Module DUNE Far Detector

Divided in 4 drift volumes

150 individual anode planes assemblies (APA) (2.3m x 6 m) 384,000 readout wires

Anode Plane Assembly (APA)

Photon-Detection System

- The Photon-Detection System (PDS) can enhance the detector capabilities for all DUNE physics goals and open new areas of investigation
- The PDS contributes to a more robust detector operation
- DUNE PDS: Efficient detection of VUV scintillation light (24ph/keV) using light collector modules in the inactive space of the APA's

Photon-Detection System: X-Arapuca

 <u>X-Arapuca light collector</u>: Captures WLS photons in a reflective internal surfaces box where a WLS plate drives the photons to SiPM's

Photon-Detection System: X-Arapuca

- X-Arapuca light collector: Captures WLS photons in a reflective internal surfaces box where a WLS plate drives the photons to SiPM's
- **<u>X-Arapuca Elements</u>**. A Supercell contains:
 - 6 <u>Dichroic filters</u> 400 nm cutoff (OPTO)
 - 1 <u>WLS plate</u> with an emission wavelength higher than the filter transmission threshold (2 suppliers Eljen and Glass-to-Power)
 - 48 electrically ganged <u>SiPMs</u> 6x6 mm² (75 μ m HQR HPK and TT FBK)
 - 1 readout channel

Requirements:

for tagging 99% nucleon decay events \rightarrow Eff \gtrsim 1.3%for calorimetric low-energy events (SNB) \rightarrow Eff \gtrsim 2.6 %

ProtoDUNE Phase II

C. Palomares CIEMAT

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Measurement of X-Arapuca Efficiency

Setups:

- X-Arapuca (XA) is submerged in LAr
- Low-activity electrodeposited ²⁴¹Am alpha source is used to produced scintillation light
- <u>Two different setups:</u>
 - CIEMAT (illumination of a fraction of XA surface)
 - Milano-Bicocca (MiB) (illumination of the whole XA 5cm away)
- > <u>Two Methods</u> for determining the light arriving to the XA surface:
 - Comparison with another calibrated photo-sensor (Method A)
 - Estimation from source energy + LAr propagation properties + simulation (Method B)

CIEMAT Setup

- + 2 VUV sensitive SiPMs are symmetrically placed with respect to the X-Arapuca and the α source
- ✦ The efficiency is measured from the <u>Reference SiPMs</u> with known efficiency
- + 1" PMT (VUV sensitive) is used to get the τ_{slow} and <u>Scintillation light monitoring</u>

Reference SiPM: Hamamatsu VUV4 SiPMs S13370 - 6075CN

X-Arapuca efficiency measurement Method A

$$\epsilon_{1}(Arapuca) = \frac{\#PE_{mm^{2}}(Arapuca)}{\#PE_{mm^{2}}(Ref.SiPM)} \cdot \epsilon (Ref.SiPM) \cdot f_{corr}$$

f_{corr} includes:

- → X-talk correction ~0.86 0.97 (±0.10)
- ➔ Fraction of integrated light
- Different solid angle (size/positioning)

X-Arapuca efficiency measurement Method A

$$\epsilon_{1}(Arapuca) = \frac{\#PE_{mm^{2}}(Arapuca)}{\#PE_{mm^{2}}(Ref.SiPM)} \cdot \epsilon (Ref.SiPM) \cdot f_{corr}$$

f_{corr} includes:

- → X-talk correction ~0.86 0.97 (±0.10)
- **\rightarrow** Fraction of integrated light 1.08 \pm 0.02
- Different solid angle (size/positioning)

HPK+G2P Deconvoluted Average

X-Arapuca efficiency measurement Method A

$$\epsilon_{1}(Arapuca) = \frac{\#PE_{mm^{2}}(Arapuca)}{\#PE_{mm^{2}}(Ref.SiPM)} \cdot \epsilon (Ref.SiPM) \cdot f_{corr}$$

<i>f_{corr}</i> includes:		X-Arapuca	SiPM
→ X-talk correction ~0.86 – 0.97 (±0.10)	Solid angle (Ω)	0.29 ± 0.02	0.034 ± 0.003
\rightarrow Fraction of integrated light 1.08 ± 0.02	Effective area (mm^2)	415.47	36.00
Different solid angle (size/positioning) 1.35 ± 0.08	$\Omega per mm^2 \left(10^4 ight)$	6.9 ± 0.5	9.4 ± 0.8

X-Arapuca efficiency measurement Method B

Ω Determined with a dedicated simulation

$$\epsilon_{2}(Arapuca) = \frac{\#PE(Arapuca)}{\#PE(Produced) \cdot \Omega} \cdot f'_{corr}$$

 $\#PE (Produced) = LY_{LAr} \cdot E_{\alpha} = 35000 \ ph/MeV \cdot 5.48 \ MeV$

f'_{corr} includes:

- X-talk correction
- ➔ Fraction of integrated light
- → LAr purity correction ~ 0.94 0.79 (depending on the campaign)

Milano-Bicocca Setup

 α source – XA distance (55 ± 1) mm

Z-scanning of the XA with the ²⁴¹Am source at 6 positions: centre of each dichroic filter and the lowest possible (~2 cm above the flange)

> The XA installed in the test chamber. The camber is pumped down to 10⁻⁴ mbar, then filled with GAr 6.0 grade that is continuously liquified by an external LAr bath.

X-Arapuca efficiency measurement Method B

$$\varepsilon_{2}(Arapuca) = \frac{\#PE(Arapuca)}{\#PE(Produced) \cdot \Omega} \cdot f'_{corr}$$

 $\#PE(Produced) = LY_{LAr} \cdot E_{\alpha} = 35000 \ ph/MeV \cdot 5.48 \ MeV$

- **f**'*corr* includes:
 - X-talk correction
 - ➔ Fraction of integrated light 0.86
 - → LAr purity correction (negligible-5%)

Results (preliminary)

X-Arapuca configurations

48 **FBK-TT** SiPMs + **Eljen** WLS plate

48 **FBK-TT** SiPMs + **Glass-to-Power** WLS plate

48 HPK 75HQR SiPMs + Eljen WLS plate

48 HPK 75HQR SiPMs + Glass-to-Power WLS plate

LAB	(PDE _{XA-SiPM} = 45%)	FBK + EJ	FBK + G2P	HPK + EJ	HPK + G2P
CIEMAT	ϵ_A (%)	1.95 ± 0.22		2.19 ± 0.20	2.98 ± 0.27
	<i>€B</i> (%)	1.48 ± 0.33		1.72 ± 0.19	2.29 ± 0.25
MiB	<i>€B</i> (%)	1.44 ± 0.06	1.74 ± 0.06		2.13 ± 0.06

X-Arapuca Efficiency

The three measurements lead to compatible results within errors

- Slightly higher efficiency using HPK SiPMs
- G2P plates increase the efficiency > 20%

Massive tests

The X-Arapucas to be installed in ProtoDUNE-II have been tested prior to their assembly and installation at CERN

@ CIEMAT

- A vessel with 300 l of Liquid N₂ accommodating up to 14 XA's (w/o dichroic filters)
- Light from 405nm Laser
- CIEMAT has tested 74 XA out of 160

Goals:

- Test their correct operation in CT
- Characterization in terms of: Gain, SNR and Dark counts

Massive tests: some results

• 3 configurations tested: HPK+G2P (HG), FBK+G2P (FG) and HPK+Eljen (HE)

- SNR ~6.5 for PDE 45%
- Dark count is below requirement (<1.7 kHz) except for Eljen WLS plates

C. Palomares CIEMAT

Conclusions

- DUNE physics will be enhanced with an efficient photon-detection system.
- ProtoDUNE phase II will test the current design of X-Arapucas in 2022/2023. All the modules have been tested and are currently being installed at CERN.
- The absolute efficiency of the X-Arapucas to be installed in ProtoDUNE-II has been measured by CIEMAT and MiB groups using two different setups and methodologies.
- The results shown an efficiency between 1.5 and 3% depending on the SiPM model, WLS plate manufacturer and XA SiPM's bias voltage.
- The 1st FD Module installation will start in 2024.
 - Some improvements on the design can be done (like better SiPM WLS plate contact, lower transmittance of the dichroic filter above threshold).

BACKUP

C. Palomares CIEMAT

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Measurement of Reference SiPM at CT

Corrections: Purity factor (*f*_{purity}**)**

The achieved purity changes along the different data taking periods:

$$\begin{aligned} \mathsf{FBK+EJ:} \ f_{purity}^{jan} &\equiv \frac{Q_{exp}}{Q_{pure}} = \mathsf{A}_{slow} \cdot \frac{\tau_{exp}}{\tau_{pure}} + A_{fast} \\ \mathsf{HPK+EJ/G2P:} \ f_{purity}^{feb} &\equiv f_{purity}^{jan} \cdot \frac{Q_{feb}}{Q_{jan}} \Big|_{Ref. SiPM} \end{aligned}$$

	$ au_{exp}$ (μ s)	f purity
FBK+EJ	1.09	0.94 ± 0.05
HPK+EJ	0.92	0.78 ± 0.05
HPK+G2P	0.99	0.79 ± 0.05

$ au_{pure}$	A _{slow}	A _{fast}
1.5 μs	0.21 ± 0.01	0.79 ± 0.02

Efficiency computation: Baseline method

Baseline method (ϵ_1)

$$\boldsymbol{\epsilon_1}(\boldsymbol{Arapuca}) = \left[\frac{PE_{area}\left(Arapuca\right)}{PE_{area}(Ref.SiPM)}\right]_{exp} \cdot \left[\frac{f_{X-talk}\left(Arapuca\right)}{f_{X-talk}\left(Ref.SiPM\right)}\right] \cdot f_{geom} \cdot f_{int} \cdot \boldsymbol{\epsilon}(Ref.SiPM)$$

V Aronuco	Abaaluta	Efficiency	/0/ \
A- Alapuca	ADSOIULE	EINCIENCY	(/0)

PDE	FBK + EJ	HPK + EJ	HPK + G2P
40%	1.70 ± 0.21	1.90 ± 0.18	2.63 ± 0.24
45%	1.95 ± 0.22	2.19 ± 0.20	2.96 ± 0.27
50%	2.29 ± 0.24	2.32 ± 0.21	3.10 ± 0.27

