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Before we begin

* Who am I?

* Who are you!

* User instructions for students who've gone thru
10 days (!) of lectures: ask questions!



The Goal

* The big questions our field tries to answer can be
summarized as

What are the dearees of freedom?

What are thelr interactions? syvmmetries?

What are the rules?!




The Tools

* Colliding Stulff:

* Looking Around Us:

We have a whole Universe to
look through for clues!




Example:

* What Power’s the sun?

© 1860°s - Kelvin and Helmholtz:
“SM” physics of those days - gravitational contraction.
Age estimate : 20 million years.

o 1904 - Rutherford:
An internal source of heat.

6 1920s (post relativity)-
Eddington proposed nuclear fusion.

o 1930’ -
Bethe calculated main nuclear reactions.



The observation of the Sun’s
energy problem could lead people
to new forces of nature (and relativity).



Our Universe

* Our Universe is big, homogeneous, isotropic.
Contains the following (by mass/energy):

7 39 DARK ENERGY

\23% DARK MATTER

R

3.6% INTERGALACTIC GAS
0.4% STARS, ETC.

We have a Universal eneray progelem:
"Whats all this stuff?”



Qutline

% Evidence for Dark Matter (Dark Energy too, if we have time).
6 Rotation curves, CMB, BBN, lensing, supernovae.

* Properties of Dark Matter:
o Lifetime, hot/cold,

© Abundance & interaction w/ matter.

% Candidates for Dark Matter:
o SUSY, WIMPs, axions,..................

% Searches for Dark Matter:
0 Direct

O Indirect

o Colliders



Evidence for Dark Matter
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Coma Cluster (1932)

* Zwicky “measured” the mass of the coma cluster
using velocities of individual galaxies:

2(K) = —(V) (virial theorem)
mM
mv® = Gy N
V2R
M= ——
Gn

This yielded a factor of 400
b/w the luminous and “gravitational” mass.

Called the missinag stubf "dark matter"




Rotation Curves

* Vera Rubin measured galactic rotation curves (60’s):
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Rotation Curves

* Vera Rubin measured galactic rotation curves (60’s):
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Rotation Curves

* This has been done many times, with ever
increasing precision for object of various sizes:
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Rotation Curves

* This has been done many times, with ever
increasing precision for object of various sizes:
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Rotation Curves

* This has been done many times, with ever
increasing precision for object of various sizes:
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Rotation Curves

* This has been done many times, with ever
increasing precision for object of various sizes:
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Dark Baryons...!

* At this point you might argue:

SO a runch Of Raryons -
are unaccounted for.
Not all Baryons shine light. ‘_
, (Hey, mayre this "dark matter” is a Bunch
Of used sneakers floating in space.) '
what’'s the Big deal?!
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C M B (Disney version)

* The CMB is a relic of the hot early Universe.

* Emitted when atoms (re)combined and the
Universe became transparent.

* In the era before recombination the density of the
plasma was oscillating on all scales.

\/W\/ \/\/\/ small

* Some of these modes will “resonate’” with the size
of the sound horizon at recombination.

sound horizon at rec.
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C M B (Disney version)

* The CMB is a relic of the hot early Universe.

* Emitted when atoms (re)combined and the
Universe became transparent.

* In the era before recombination the density of the
plasma was oscillating on all scales.

M/ \/\/\/ small

* Some of these modes will “resonate’” with the size
of the sound horizon at recombination.

sound horizon at rec.

NON—-rresoNnant




CMB

%* Modes that reonate with the Universe at
recombination have more power.
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* The precise dynamics depends, among many things,
on the matter density and baryon density.



C I I B Hu 0802.3688

%* Modes that reonate with the Universe at
recombination have more power.
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* The precise dynamics depends, among many things,
on the matter density and baryon density.



Big Bang Nucleosynthesis
* The theory of BBN describes how D, He, Li, were

fused during the early universe.

* Disney version:
© Put a bunch of protons and neutrons into a hot soup.

© Let the soup cool and expand.

© Include nuclear reactions and apply thermodynamics.

L) Nnuclear arundances for -H, D, He, Li

* One of the key parameters that will determine the
outcome is the density of baryons.



Big Bang Nucleosynthesis

Baryons amount to
4% of the Universe.

From other sources:
Total matter is 22%.

\ 4

DM is non-raryonic.

(there went my theory of "sneaker dark matter™
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Bullet Cluster

* Two galaxy clusters collided (Hubble):
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Bullet Cluster

* Two galaxy clusters collided (Hubble):




Bullet Cluster

* The baryonic mass is mostly gas.
Gas is hot due to the collision. Emits x-rays (red):
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Bullet Cluster

* The distribution of the total mass is determined by
gravitational lensing (blue):




Bullet Cluster

* The total mass and the dominant baryonic mass are
not in the same place:







But is there DM here!

* A recent analysis of the velocities of near by stars
supports the hypothesis that there is DM in our

neighborhood of the milky way (1205.4033).
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Food for thouaht for this evenina:

" Every pint of peer
comes with a single
dark matter particle:

(assuming It's mass is ~50 GeV)




In Parenthesis: Dark Energy

note: the reason I’'m note discussing much of DE is
not because its not interesting or mysterious.
Its because the connections to colliders is weak.




Supernovae:

* Hubble’s discovery of the
expanding Universe.

* Version 2.0:
Done to higher precision
and to earlier times with
type | A supernovae.

* The expansion of the
Universe is accelerating!
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This is most simply explained with

a cosmological constant.
(Einstein’s biggest blunder, remember?)

This is a huge theoretical problem...
but thats for another time.




DM Properties

%* cold.:

Simulations of the formation of large scale structure
seems to favors cold (a.k.a non-relativistic) DM.

* long lived.
DM is still around today. It should not decay faster
than the age of the Universe. If it decays to SM
particles the limits are much stronger:
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DM Properties

% does not interact much:

Obviously. Its dark.
But due to halo shapes we know-

© it does not interact strongly with itself, otherwise halos
would be too spherical (e.g. Fox and Buckley 2009).

O it does not interact with massless particles, otherwise
those could be radiated, and the halo would collapse to

a disk.

Does it have any
non-gravitational interactions?



Relic abundance: VWIMPS

% What sets the amount of DM?

* Lets assume that DM has a weak interaction with
matter:

It can annihilate.

* What happens if we add such a particle to the
primordial hot soup!?



Relic abundance: VWIMPS

Disney Version:
Initially DM is in thermal equilibrium.

XX < ff

As the T drops below the mass it is “energetically
favorable” for DM pair to convert to SM particles.

L > DM srundance reains to drop.

At some point, DM particles will not find friend to
annihilate with. The abundance is set. Freeze-out.



Relic abundance: VWIMPS

* When is it that two WIMPs can’t find each other?

L E Xpansion rate
annihilation rate ~ .
of the Universe

or

a
Particle Physics NDM <O’U> ~N =~ — Cosmoloay
a

(in practice we solve a roHtzman equation)

This gives an intriguing result...



Relic abundance: VWIMPS

* Abundance is independent of
initial conditions. :-)

* Set by annihilation cross-

section:
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EVV cross-sections! what a coincidence!



WIMPs :-)

* Experiment.
A new particle with weak scale mass and cross
section around| pb. sounds good! Could lead to:

DM DM !
© Scattering off a nucleus. x dec.\t‘;‘i.gtor\

q q

DM q 1AA
© Annihilation in our galaxy. X dg,\ti‘r;gr\
DM

q

q DM

© Production at a collider. X Production
_ (thouah we’'d retter find
q DM another diaaram)

Just keep turning the diaaram on its side... more ister



WIMPs :-)

* Theory:
Dark matter needs to annihilate with weak=scale
Ccross-sections.

New physics at the wesak or TeV scale .
We have plentty of those lying around!

For examples, see Lian Tao’s Talk:
SUSY, Extra dimensions, compsiteness...

* Experiment (again):
Many of these theories have new colored particles.
Produced strongly. Decay to DM.

Hiah rates for NP sianals with MET i



WIMPs in BSM e.g. SUSY

* |n many theories a new parity was needed to, say,

prevent proton decay (in SUSY):

(4 ) f%— ~
5t j U D 112 ; }ﬂo
L UJM
"Bad" coupling
foreridden
X , f
7!

X ' f
P - —

(ripped £rom Lian Tao’s talk)

odd —

LSP ° €ven

e

Lichtest odd particle’is
starle (for "free'? ).

But it can annihilate via
spar-ticle exchanae.
spar-ticle mass is set to
solve other proglems!



SUSY WIMPs

* |n fact, neutralinos can annihilate in many many ways:

Jungman, Kamionkowski, Griest (1995)



SUSY WIMPs

* A variety of possibilities: interesting
phenomenology, but also...

* Connections between experiments are highly
model dependent.

NoO lonager turning a single diaaram on Its side..

For example:



Jungman, Kamionkowski, Griest (1995)



Jungman, Kamionkowski, Griest (1995)



SUSY & Colliders

* SUSY particles are produced via colored squarks
or gluinos.

* This is great for discovering New Physics, but hard
to make the connections to dark matter.
(nature can certainly be this way).

Indeed, | wish we had this problem....



SUSY Limits

* Limits on SUSY also are model dependent:
CMS Preliminary L _ =4.98 fb"',\'s =7 TeV
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Which means there are ways to evade them! -)



SUSY Limits

* Limits on SUSY also are model dependent:

T

© =025

CMS preliminary m(mother) —m(LSP) =200 GeV D ro050 m(LSP)=0 GeV

x=0.75

T1: §—49x" | gluino

Tlbbbb: §—bby" gluino

Titttt: g—tx” | gluino

T2: 34X’ | squark

T2bb: b—bX° | sbottom

T2tt: %—)tf(o Stop

T3Ih: g—qa(xs =171 X") | gluino

T3w: g—qq(x* =WK|X°) gluino y—l_‘

T5lnu: x* =1 v%° | gluino

T52z: §—qq(Xs —2X°) gluino

TChiSlepSlep: ¥3x* — vy X’ chargino/neutralino

7 TeV, < 4.98 fb!

foe ot <0 <0 ~0 . ;
TChiwz: X~ x; -WZX" X chargino/neutralino

0 200 400 600 800 1000 1200
Mass scales [GeV1

Which means there are ways to evade them! -)




Other DM Candidates

* Other Wimps-
6 KK-photons (extra dimensions), LTP (little Higgs),
Inert doublet,

* Axions- (not a WIMP!)
© Originally proposed to for the strong CP problem.

O itis a very weakly coupled and very light particle.

O Searches are far fewer (opportunity!), and non-collider.

* Asymmetric DM- (also not a WIMP)
o0 Exploit the fact that ppum ~ few X pmatter -
© Invoked an asymmetry b/w DM and anti-DM (like us).

o Signals are model dependent, but possible everywhere.
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Enjoy
* [nterim summary: today was about getting you
curious about what’s in your pint. Dark Matter!

* Tomorrow: y
MOI"e on hOW tO deteCt it. THE BEER
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Cheers.



Direct, indirect, collider



Direct detection



Current Anomalies



Indirect



Colliders



