

Calorimetry at Colliders

James Proudfoot

Argonne National Laboratory

Calorimetry at Colliders, HCPSS2012 Aug 15/16 2012

J. Proudfoot

A bit about myself

Calorimetry in Particle Physics

I will give 2 lectures at this summer school:

Part 1: Calorimeter basic principals and general features of electromagnetic and hadronic showers

Part 2: Precision measurement with calorimeters – with focus on hadron colliders

Calorimeters are ubiquitous.. e.g. from 1979 - 2012

And they have made some amazing measurements

Calorimeters in Particle Physics

Advantages

- Measure neutrals as well as charged hadrons and photons
- Resolution improves with particle energy (unlike the case for the measurement of a particle momentum in a magnetic field)
- If hermetic (i.e. covers a large fraction of the kinematic acceptance for the process in question) can be used to infer the presence of *neutrinos* in the final state
- Can provide a fast trigger

Disadvantages

- Generally, calorimeters have a non-linear response to charged hadrons
- Hadron calorimeters need to be BIG to provide adequate containment for high energy particles. Cost vs performance compromises must be made
- Design and construction of these devices and providing the physical space to extract the signals from them presents a non-trivial engineering challenge

But what are they and how do they work exactly?

Fundamentally they are blocks of matter which degrade the energy of high energy particles to the levels of atomic ionization and excitation and are instrumented to detect the ionization and de-excitation of the exited states produced and convert this into an electrical signal

The key feature is that the signal detected should be proportional to the energy of the incident particle

First the "easy" part - electromagnetic calorimeters

Interactions of particles with matter: PDG PR D86, 010001 (2012) – electromagnetic processes

Fractional energy loss per radiation length in lead as a function of electron or positron energy, using $XO(Pb) = 6.37 \text{ g/cm}^2$

9

Ionization and Excitation

Charged particles with sufficient energy can ionize atoms when passing through a medium – i.e. remove or add electrons to them.

Photons can interact with electrons in a lower orbital and convert them to an excited state. Typically this excited state lives for a very short time before decaying the ground state by emitting photon(s)

Longitudinal Shower development (I)

high energy electrons and photons interact primarily through electromagnetic interactions with the nucleus => the longitudinal development of the shower is dominated by bremsstrahlung and pair production to generate a cascade of particles: this scales with radiation length $X_0 \sim 180$ A / Z^2 g/cm²

The radiation length X_0 is the mean distance over which electron loses all but 1/e of its energy by bremsstrahlung

Eventually the electron energy falls below the so-called critical energy at which the ionization loss per radiation length is equal to the electron energy and the electron then dissipates its energy by ionization

> An EGS4 simulation of a 30 GeV electroninduced cascade in iron. The circles indicate electrons with energy > 1.5MeV

Lateral Shower development

Transverse shower size set by the Moliere radius $R_M \sim X_0$ (21 MeV/E_c) – the radius containing 90% of the electromagnetic cascade – though there are long tails.

Fig. 4. Measured lateral distribution for lead (circles) in comparison with Monte-Carlo results (dotted line with error bars).

(BATHOW)

Some examples of R_M: Lead: 1.6cm Lead-Tungstate: 2.0cm Iron: 1.7cm

Measurement of the shower

Either using

sampling calorimeters where layers of passive absorber are interspersed with layers of a detector to sample the ionization energy.

Or

Homogeneous (crystal/glass) calorimeters (such as lead-tungstate calorimeter of CMS) in which the active and passive material are combined for the measurement of photons and electrons. Offer exceptional energy resolution (few %/ \sqrt{E} for photons and electrons)

 \Rightarrow These are costly and therefore only used to measure EM showers

Sampling Calorimeters

Cloud chamber + Passive Absorber

These calorimeters sample the showers produced by high energy particles at regular intervals.

The passive absorber is selected based on the type of particle to be detected The sensitive detector is typically chosen to match cost and required performance

Sampling Calorimeter - Energy response and resolution

- It is the ionization energy, dE/dx, deposited in the sensitive detector which we measure, all other ionization energy is deposited in the passive absorber
- Sampling fraction is $\sum (dE/dx)_{active medium} / \sum (dE/dx)_{absorber}$
- The energy measurement is in principal linear, so for an infinitely deep detector:

- $E_{particle} = k * \{(dE/dx)_{absorber}/(dE/dx)_{active medium}\} * \sum (dE/dx)_{active medium}$

- Energy deposition is statistical and depends on the number of particles in the shower which contribute to ionization
 - N_{shower} ~ E_{particle}/E_{critical}
 - For an electromagnetic cascade the critical energy, E_{critical}, is characterized by the energy at which ionization dominates over pair production
 - For a hadronic cascade the critical energy is characterized by the energy for Pion multiplication (e.g. $\pi p \rightarrow \pi \pi p$
- Resolution $\sigma_{\rm E} \simeq 1/\sqrt{N_{\rm shower}} \Rightarrow \sigma_{\rm E} \simeq 1/\sqrt{E_{\rm particle}}$

Sampling Fluctuations

- Path length fluctuations also affect the measurement resolution of a sampling calorimeter
- Numerically, this term in the resolution function is dependent on the type of showering particle
 - For electromagnetic showers $\sigma(E)/E = k \sqrt{(t_{em}/E)}$, where t_{em} is the absorber thickness expressed in radiation lengths
 - For hadronic showers $\sigma(E)/E = k \sqrt{(t_{had}/E)}$, where t_{had} is the absorber thickness expressed in interaction lengths

For a much more detailed discussion, see the beautiful paper by [AMALDI]

Sensitive detectors used in sampling calorimeters

More Common Scintillator (solid and liquid)

Liquid Argon

Less Common Gas proportional tubes

Silicon

Scintillator as the Sensitive Medium (here solid)

Getting the light out

Shown here is the tile-fiber readout concept. In earlier detectors, wavelengthshifter plates were edge coupled to scintillator tiles – but at the cost of reduced sensitive detector volume

From light to an electrical signal

The light collected by the fiber from the scintillator is transported by total internal reflection along the fiber until it is coupled to a photon sensor. Many types of sensor are used – by all use some sort of photo-cathode together with an amplification structure., e.g. Photo-multiplier tube, or avalanche photo-diode

And the signal is FAST

But, there is a price to pay:

~3% sampling fraction, 3% light collection rom tile to fiber, 50% attenuation in transport along the fiber and finally the Quantum Efficiency of the photon-sensor

From ionization signal to electrical signal

The ions have a much smaller drift velocity compared to electrons, therefore a track crossing a gap (and depositing charge uniformly) will give rise to a triangular current. For liberated charges $+Q_0$ and $-Q_0$, gap d, and drift velocity v of electrons:

I(t) = Qv/d with $Q = Q_0 (1-vt/d)$.

Bi-polar pulse shaping, followed by digitization

Lead-liquid argon sampling calorimeter basic unit

Homogenous electromagnetic calorimeter

The fundamental energy degradation processes are identical to those in a sampling calorimeter, then ionization -> scintillation light -> APD -> electrical signal

Experiment	C. Ball	L3	CLEO II	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	Tevatron	PEP II	KEK	LHC
Date	75 - 85	80-00	80-00	90 - 10	94 - 10	94 - 10	95 - 20
Crystal Type	NaI(Tl)	BGO	CsI(Tl)	CsI	CsI(Tl)	CsI(Tl)	$PbWO_4$
B-Field (Tesla)	-	0.5	1.5	-	1.5	1.0	4.0
Inner Radius (m)	0.254	0.55	1.0	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	2	5.9	9.5	11
L. Yield (p.e./MeV)	350	1,400	5,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	\mathbf{PMT}	Si PD	Si PD	APD^{\dagger}
Photosensor Gain	Large	1	1	4,000	1	1	50
Noise/Chan. (MeV)	0.05	0.8	0.5	Small	0.15	0.2	30
Dynamic Range	10^{4}	10^{5}	10^{4}	10^{4}	10^{4}	10^{4}	10^{5}

Table 1. Crystal Calorimeter in High Energy Physics: Past and Present

† Avalanche photo-diode.

Note light yield is huge relative to a sampling scintillator calorimeter: CMS ECAL is 2000pe/GeV, to be compared with ATLAS Tile Cal of ~60pe/GeV

Energy resolution of a crystal calorimeter

CMS Lead-Tungstate Calorimeter – response to high energy electrons

BUT even Electromagnetic Showers Are not Simple

calibration

One last point - the preshower detector

Electromagnetic calorimeters are the detector which must also IDENTIFY photons and differentiate them from p0's for example.

Typically, the initial few radiation lengths of the detector is instrumented with fine granularity and readout separately to accomplish this either on a statistical basis or on an event-by-event basis.

Hadron Calorimetry

 $\Rightarrow \text{Our ansatz "Measured Ionization"} = F(E_{\text{particle}})$ $\Rightarrow \text{In an ideal world this would be linear}$

 \Rightarrow In an ideal world the signal response for any given detector layer would be uniform

 \Rightarrow In the real world *F* is non-linear and inverting this to obtain the most accurate estimate of the incident particle is THE major issue for both the resolution and linearity of any calorimeter

 \Rightarrow And this is the case for both electromagnetic showers and shower produced by high energy hadrons

And response is dependent on particle type and energy

The response of the CMS calorimeter system to different types of particles as a function of energy

Hadronic calorimetry - NOT simple to model!

More on this later

Ionization energy deposition for hadrons in Fe

[GABRIEL]

Calorimetry at Colliders, Part 1, HCPSS2012 J. Proudfoot

Fig. 5. Hadronic energy loss by various mechanisms in cascades initiated by protons (solid lines) and negative pions (dashed lines) in iron, as simulated with CALOR. Energy deposits are given as fractions of the energy not carried by π^{0} 's. "Total ionization" is the sum of primary and secondary ionization by pions and protons, and is shown to demonstrate the constancy of the sum of all ionization contributions. Exclusive of this subtotal, the sum of the contributions at each energy is unity.

Hadronic Calorimeters - some issues

As far as I know, all hadron calorimeters are sampling calorimeters

⇒Choice of passive absorber (Pb/Fe/Cu/W/quartz are among the many possibilities) – not that important

 \Rightarrow Choice of sensitive medium (taste and prior experience plays a big role here)

 \Rightarrow e/h and fraction of energy deposited by π^{0} 's in the shower

 \Rightarrow The role of neutrons

 \Rightarrow compensation

 \Rightarrow By nuclear fission (e.g. ZEUS)

 \Rightarrow By sampling fraction (decrease EM response)

 \Rightarrow by energy flow techniques

- Invisible non-EM energy (eg nuclear breakup) :O(25%)
 - Escaped energy (eg v) :O(1%)

Binding Energy Fluctuations

The Stochastic coefficient scales as t_{had} as expected. The non-zero intercept indicates that this is not the full story => (nuclear) binding energy fluctuations

The role of neutrons - a lecture in its own right

Mentioned here for completeness: as far as I know this is not relevant in any operating calorimeters (it was relevant for D0 and ZEUS)

Fig. 11. The contributions to "visible" energy from proton recoils and from the nuclear processes. In the lethargy-plot, areas are directly proportional to an amount of energy contributed.

Active Compensation: ZEUS Calorimeter using U/Scint

Calorimetry at Colliders, Part 1, HCPSS2012 J. Proudfoot

Hadron Shower Development

Hadronic showers are defined by the fraction of energy transferred to the electromagnetic sector by the production of $\pi^{0'}s - 1/3$ rd of the energy on each interaction (isospin).Once transferred it doesn't return to the hadronic sector.

Fraction of Energy Carried by $\pi^{0'}s$

[AMARAL]

Integrate the contribution for the first component to obtain the fraction of energy carried by $\pi^{0'}$ s

$$f_{\pi^{0}} = \frac{a_{1}\lambda_{1}}{\sum_{i=1}^{3} a_{i}\lambda_{i}}.$$
(29)

For the entire Tile Calorimeter this value is $(53 \pm 3)\%$ at 100 GeV.

The observed π^{o} fraction, $f_{\pi^{o}}$, is related to the intrinsic actual fraction, $f'_{\pi^{o}}$ by the equation

$$f_{\pi^{0}}(E) = \frac{eE'_{\rm em}}{eE'_{\rm em} + hE'_{\rm h}} = \frac{e/hf'_{\pi^{0}}(E)}{(e/h - 1)f_{\pi^{0}}(E) + 1}$$
(30)

Fig. 20. The $f_{\pi^0}(x)$ fractions of hadronic showers as a function of x.

Tile Calorimeter Prototype

Same story...

[AMARAL]

Hadron Shower Development (II)

96 Layers of Pb/Scintillator Sampling Depth is 0-6 λ [GREEN]

Fluctuations in depth are indicative of the fluctuations associated with the deposition of electromagnetic energy

Substantial event-to-event variation. Therefore any useful correction must be event-by-event

Sample-to Sample Correlations

Features of Hadronic Showers: Recap

We have now established several of the important "well-known" features of hadronic showers:

- •In general e/p relative response is not equal to 1
- •A large fraction of the energy is deposited through em showers ($\pi^{0'}$ s)
- •The starting point for the em component various wildly (little sample to sample correlation early in cascade)
- •Fluctuations in binding energy appear to be the principal mechanism which limit the precision of the measurement of the energy of the incident particle
- •The transverse shower shape is a function of the depth of the shower

The Way to Address These Issues (I)

The Way to Address These Issues (II)

41

Some examples of calorimeters

CDF	
ATLAS	
D0	
CMS BCAL	
CMS HCAL	
CMS HF	

CDF EM and Hadronic Calorimeter

HAD Section: 25mm Fe, 10mm scintillator

Readout by wls fingers

EM Section: 3mm Pb, 5mm scintillator, 3mm Y7 waveshifter plate

D0 Calorimeter

ATLAS Barrel Hadron Calorimeter

The iron structure supporting the calorimeter (girder) is contains the return field of the ATLAS 2 Tesla solenoidal field. The photon-sensors are inside the girder and in a modest B-field

Tile Cal a Fe/Scint with WLS fiber Readout via PMT

ATLAS Barrel Liquid Argon Calorimeter

Calorimetry at Colliders, Part 1, HCPSS2012 J. Proudfoot

46

ATLAS FCAL

CMS HCAL

Brass/Scintillator Sampling Plate Calorimeter

NB. The detector and photo-detectors are inside the CMS 4 Tesla Magnetic Field

CMS ECAL

Light detection via APD ~

Looks simple, but requires significant development to grow crystals of sufficient size, transparency and light yield

CMS HF

Quartz fiber Cerenkov Calorimeter with Steel Absorber

350 GeV Pion Signal

Lecture 2

Precision measurements with calorimeters at hadron colliders – turning them into scientific instruments

Some Reference Material

- [AMALDI], Physica Scripta Vol23 (1981) 409-424
- [KOEN] <u>http://kaon.kek.jp/~scintikek/pdf/koen-17-nov.pdf</u>
- [ABRAMOWICZ] NIM 180 (1981) 429
- [FRIEND] NIM 136 (1976) 505-510
- [AMARAL] NIM A443 (2000) 51-70
- [GREEN] http://www-ppd.fnal.gov/eppofficew/Academic_Lectures/Past_Lectures.htm
- [HUGHES] SLAC-PUB 404 (1990)
- [WIGMANS] CALOR0 http://ilcagenda.cern.ch/getFile.py/access?contribId=87&sessionId=5&resId=0&materialId=slides&confId=522
- **GABRIEL] NIM A927 (1993) 1-99**
- **[JOB] NIM A340 (1994) 283-292**
- [CDFJNIM] hep-ex/0510047
- [DAMGOV] CALOR06
 <u>http://ilcagenda.cern.ch/getFile.py/access?contribId=106&sessionId=35&resId=0&materialId=slides&confId=522</u>
- [FABIAN] Calorimetry for particle physics, Christian W. Fabjan and Fabiola Gianotti, Rev. Mpd. Phys. Vol 75, 2003
- [BATHOW] Nucl. Phys. B20 (1970) 592-602
- BRUCKMANN, Nuclear Instruments and Methods in Physics Research A263 (1988)
- WIGMANS Rev. Sci. Inst. 69, 3723 (1988)