Relativistic Heavy Ion Physics

Sevil Salur Rutgers University

Why do we do Relativistic Heavy Ion Physics?

Goal: Create the hottest matter on earth (Quark-Gluon Plasma)

A relativistic heavy ion collision: Two nuclei colliding at $\sqrt{s} \sim 1 - 10000$ GeV Thousands of new particles are produced. The product of the collision is NOT a simple superposition of elementary nucleon-nucleon collisions.

Heavy Ion Events in Detectors:

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

Q1: *Why* measure such complexity?Q2: How to measure such complexity?Q3: What did we learn so far?

Heavy Ion Events in Detectors:

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

Q1: *Why* measure such complexity?Q2: How to measure such complexity?Q3: What did we learn so far?

- Verify existence of QGP
- Study properties of QGP
- Use external and internal probes
- Small viscosity perfect liquid.
- Opaque to fast partons

Increase the temperature and pressure.

Crush matter into a soup of its constituents.

Hadronic matter

Quark gluon plasma A very hot soup at ~10¹²K

The Landscape of QCD

Heavy Ion Collisions at RHIC and LHC create conditions sufficient to "melt" matter into a quark gluon plasma

How can we experimentally study the thermodynamics of the STRONG force?

Imagine...

- You know that ice exists...
- Your theory friends with huge computers tell you that there is something called water...
- You don't have a way to heat ice...
- So you put millions of ice cubes in an iceaccelerator
- Send them at 99.995% of the speed of light to collide
- Generating thousands of ice-cube+ice-cube collisions per second...
- And you watch it all from the vicinity of Mars!

Producing "Bulk" nuclear Matter in the laboratory.

We must create/compress/heat a **bulk** (geometrically large) system Freeze/melt a single H₂0 molecule? Fundamental distinction from particle physics

Only achievable through collisions of the heaviest nuclei (Au, Pb) at the highest available energy– Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)

- RHIC = <u>R</u>elativistic <u>Heavy Ion</u> <u>Collider</u>
 - 3.83 km circumference
 - Two independent rings
 - 120 bunches/ring
 - Capable of colliding ~any nuclear species on ~any other species

Energy:

- → Up to 500 GeV for p+p
- Up to 200 GeV for Au+Au (per N-N collision)
- Luminosity
 - Au+Au: 2 x 10²⁶ cm⁻² s⁻¹
 - p+p : 2 x 10³² cm⁻² s⁻¹ (*polarized*)

RHIC Experiments

STAR ~550 Collaborators specialty: large acceptance Hadronic Observables Jets & Di-Hadron Physics High-pT Quarkonia

PHENIX ~550 Collaborators specialty: rare probes, leptons, and photons

Last 10 Years of Discoveries

- Collective Flow:
 - → behaves more like liquid rather than gas.
 - \rightarrow small viscosity perfect liquid.
- Particle Production:
 - \rightarrow recombination/ coalescence dominates over fragmentation at medium p_T
- Jet Quenching:
 - \rightarrow opaque to fast partons

Mont Blanc

LHC:The Next Frontier....

- LHC = Large Hadron Collider LHC is not only a p+p machine! At least 4 weeks in a year is devoted for heavy ions...
 - □ 27 km circumference
 - 100 m underground
 - Two independent rings
 - Capable of colliding ~any nuclear species on
 - ~any other species
 - Energy:
 - ➡ Up to 14000 GeV for p+p
 - → Up to 5500 GeV for Pb+Pb (per N-N collision)

LHC Experiments

LHC Heavy lon program started in late 2010 Pb+Pb and p+p at 2.76 TeV per NN!

Why Study Heavy Ion Collisions at LHC?

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{ch} /dy	500	700-1500	3-10 x10 ³
ε (GeV/fm³)	2.5	3.5-7.5	15-40
τ _{QGP} (fm/c)	<1	1.5-4.0	4-10

J. Schukraft QM2001

LHC provides a **critical** lever arm in energy.

LHC : Longer - Hotter – Colossal (Bigger)

Experimental search for "interesting" phenomena

- Look at elementary p+p collisions
 - Measure an observable (e.g. Jet production)
- Look at Heavy Ion collisions
 - Measure the same observable as we do in p+p
- Compare them, is there something new?

Geometry Matters!

Impact parameter vector \vec{b} :

- \perp beam direction
- connects centers of colliding nuclei

Geometry Matters!

- Focus on some slice of the collision:
 - Assume 3 nucleons struck in A, and 5 in B
 - Do we weight this contribution as
 - N_{part} (= 3 + 5) ?
 - N_{Bin} (= 3 x 5) ?
- Answer is a function of p_T :
 - Low p_T ⇒ large cross sections ⇒
 yield ~N_{part}
 - Soft, non-perturbative, "wounded nucleons", ...
 - High p_T ⇒ small cross sections ⇒
 yield ~N_{Bin}
 - Hard, perturbative, "binary scaling", point-like, A*B, ...

Terminology: Centrality of A+A Collisions

Number of Binary Collisions: (# of inelastic nucleon+nucleon collisions)

- 1. Jet Production
- 2. Heavy Flavor (s,c,b)

Fraction of cross section "centrality"

Number of Participant: (# of incoming nucleons in the overlap area)

- 1. Soft Hadron Production
- 2. Transverse Energy

Sevil Salur

p_τ (GeV/c)

e[±], π[±], π⁰, K[±], K^{*0}(892), K⁰_s, η, p, d, ρ⁰, φ, Δ, Λ, Σ*(1385), Λ*(1520), Ξ[±], Ω, **D⁰**, **D[±]**, **D**_s, J/Ψ's, Y's (+ anti-particles) ...

How to characterize this richness of data?

Particle Production and Volume

Particle production can be described by phase space!

Pointed out by Fermi and Hagedorn in 50-60's (and discussed much more since)

Assume: Ideal hadron resonance gas thermally and chemically equilibrated Recipe: <u>Canonical (small system i.e. pp)</u>:

Quantum Numbers conserved exactly.

Grand Canonical limit (large system i.e. central AA):

Quantum Numbers conserved on average via chemical potential

 \Rightarrow partition function \Rightarrow density of particles of species ρ_I *Output:* temperature T, chemical potential μ_i which generates particleantiparticle difference and γ_i which regulates the sum of particleantiparticle pairs

A multi-hadron state should be described by thermodynamics with a limiting temperature. If spectrum of resonant states is exponential, as higher states are populated, T increases.

If number of states increases exponentially, T saturates!

Particle Production and Volume

Particle production can be described by phase space!

Pointed out by Fermi and Hagedorn in 50-60's (and discussed much more since)

Statistical models are used to estimate the equilibrium properties

Assume: Ideal hadron resonance gas thermally and chemically equilibrated

The Limits of Thermodynamics

This exercise in "hadro-chemistry"

- Applies to final-state (ordinary) hadrons
- Does not (necessarily) indicate
 - QGP formation
 - De-confinement
 - New state of matter
- A smooth continuation of trends seen
 - at lower energies
 - in p-p, even e⁺e⁻

Systematizing Our Expectations: Compare with p+p

 Describe in terms of scaled ratio R_{AA}

 $= \frac{\text{Yield in Au + Au Events}}{N_{Bin} (\text{Yield in p + p Events})}$

= 1 for "baseline expectations"

- Low p_T ➡ large cross sections ➡ yield ~N_{part}
 - Soft, non-perturbative, "wounded nucleons", ...

(mb/GeV²)

b/ob

- − High p_T → small cross sections → yield ~N_{Bin}
 - Hard, perturbative, "binary scaling", point-like, A*B, ...

Nuclear Modification Factors R_{cp}

The 'quenching' of high pt particles due to partonic energy loss. (Lecture 2)

Parton recombination at intermediate p_T

 in vacuo fragmentation of a high momentum quark to produce hadrons competes with in medium recombination of lower momentum quarks to produce hadrons

•6 GeV/c particle via : fragmentation from high p_T

meson

- 2 quarks at p_T ~3 GeV/c baryon

- 3 quarks at p_T^2 GeV/c

Recombination produces more baryons than mesons at intermediate p_T

R.J. Fries et al., PRL 90 (202303) 2003 V. Greco et al., PRL 90 (202302) 2003

Bulk Behaviour

Energy is deposited in small volume.
~ size of Lorentz-contracted nuclear overlap.
→Leads to formation of transient state.

State undergoes hydrodynamical expansion. System cools down while expanding. \rightarrow Reaches a freeze out temperature. T_f ~ m_π Below T_f, hadrons become free particles.

Landau

Hydrodynamics:

Assume: local thermal equilibrium (zero mean-free-path limit) **Solve**: equations of motion for fluid elements (not particles)

Hydrodynamic Equations $\partial_{\mu}T^{\mu\nu} = 0$, Energy-momentum conservation $\partial_{\mu}n_{i}^{\mu} = 0$ Charge conservations (baryon, strangeness, etc...) For perfect fluids (neglecting viscosity!),

 $T^{\mu\nu} = (e+P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$

Energy density Pressure 4-velocity

Within ideal hydrodynamics, pressure gradient dP/dx is the driving force of collective flow.

Strong Collective Radial Expansion

Different spectral shapes for particles of differing mass → strong collective radial flow

Au+Au central , $\sqrt{s} = 200 \text{ GeV}$

Kinetic Freeze-Out @ 200 GeV

Radial flow β_T : increases with \sqrt{s} and centrality Freeze-out Temperature T_{fo} : decreases with centrality, constant in \sqrt{s} (bigger systems freeze out later)

Utilize Azimuthal Anisotropy

Expansion is driven by a gradient of pressure

There is a preferential direction for particle emission (Anisotropy in momentum space)

Azimuthal Anisotropy of Emission: Elliptic Flow

 v_2 : 2nd harmonic Fourier coefficient in dN/d ϕ with respect to the reaction plane

Flows like a liquid

Phys. Rev. C 72 (2005) 014904

Hydrodynamical models describe data well for p_T (< 2.5 GeV/c) $v_2(\pi) > v_2(K) > v_2(p) \sim v_2(\Lambda)$

 \Rightarrow compatible with early equilibration

Strongly suggests that this is *not* just a superposition of p+p collisions

Quarks Flow

pressure builds warly, dressed quarks are born of flowing field

Hydro Limits: Like a Perfect Liquid?

hydro- dynamics without any viscosity describes heavy ion reactions: Thermalization time τ = 0.6 fm/c, Energy Density: ϵ =20 GeV/ fm³

 ε =spatial eccentricity = $\langle y^2 - x^2 \rangle / \langle y^2 + x^2 \rangle$ S=overlap area

Small Viscosity:

Viscosity describes a fluid's internal resistance to flow inability to transport momentum & sustain a wave

Viscosity/entropy (η /s) ~1/4 π limit → liquid at RHIC is "perfect" !

Good momentum transport: neighboring fluid elements "talk" to each other

Can we do better? How to quantify?

- Use hydrodynamics
- Set initial energy density to reproduce observed particle multiplicity
- Use various values of η /s
- Constrain with data

Viscous hydrodynamics & RHIC data

P. Romatschke et al. Phys. Rev. Lett. 99:172301 (2007)

mum bias v_2 seems to favor $\eta/s \simeq 0.03$, at least at low momenta, where hydrodynamics is supposed to be most applicable. Note that this result could change drastically if the minimum bias data were decreased by 20%, which is the estimated systematic error quoted in [25].

There are, however, a number of caveats that should be considered before taking the above numbers literally. Firstly, we have only considered Glauber-type initial conditions, and assumed $\Pi^{\mu\nu}(\tau_0) = 0$. It has been suggested that CGC-type initial conditions lead to larger overall v_2 [33] which in turn would raise the allowed values for η/s in our calculation. This is due to the larger eccentricities in this model [34] (note the issues raised in [35]). How-

Caveats: Details of hydro code, Viscous correction, Initial conditions, freezeout particle mix, What is η/s ?

Viscous hydrodynamics & RHIC data

2 models with: Different fluctuations, Eccentricity, ρ distribution

 V_2 described by both Glauber and CGC but different values of η/s

> Lappi, Venugopalan, PRC74, 054905 Drescher, Nara, PRC76, 041903

Viscous hydrodynamics & RHIC data

2 models with: Different fluctuations, Eccentricity, ρ distribution

 V_2 described by both Glauber and CGC but different values of η/s

v₃ described only by Glauber breaks degeneracy

Lappi, Venugopalan, PRC74, 054905 Drescher, Nara, PRC76, 041903

Initial conditions & hydro details are still on the works!

Hydrodynamics at LHC

Pb+Pb at LHC flows similarly

the integrated elliptic flow increases 30% (caused by the increase in the mean pt)

ALICE Phys. Rev. Lett. 105, 252302 (2010) PRL 107, 032301 (2011)

Hydrodynamics at LHC

Pb+Pb at LHC flows similarly

the integrated elliptic flow increases 30% (caused by the increase in the mean pt) ALICE Phys. Rev. Lett. 105, 252302 (2010) PRL 107, 032301 (2011)

Favors a small value of Viscosity/entropy (η /s)

Last 10 Years of Discoveries

Collective Flow:

- → behaves more like liquid rather than gas.
- → small viscosity perfect liquid.
- Particle Production:
 - → recombination/ coalescence dominates over fragmentation at medium p_T
- Jet Quenching:
 - \rightarrow opaque to fast partons

