Finding the (a) Higgs Boson S. Dawson Fermilab 2012, Lecture 2

- Production of a Higgs boson
 - How much freedom do we have to change the Standard Model predictions
 - What are the theory uncertainties?
 - Which channels are important?

Recap

- Standard Model is simple
 - 4 input parameters (G_F, α , M_Z, M_h)
- All Higgs couplings predicted
- Only unknown is Higgs mass
- Many things put in by hand
 - Which gauge group, left-handed doublets, number of generations, fermion masses
- Pretty much everything works (experimentally)

	Measurement	Fit		$^{as}-O^{fit}l/\sigma^{m}$	ieas 2
$\Delta \alpha_{\rm had}^{(5)}({\rm m_{7}})$	0.02750 ± 0.00033	0.02759	¥		
m _z [GeV]	91.1875 ± 0.0021	91.1874			
Г _z [GeV]	2.4952 ± 0.0023	2.4959			
$\sigma_{had}^{0}\left[nb ight]$	41.540 ± 0.037	41.478			
R	20.767 ± 0.025	20.742		•	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645			
A _l (P _z)	0.1465 ± 0.0032	0.1481	-		
R _b	0.21629 ± 0.00066	0.21579			
R _c	0.1721 ± 0.0030	0.1723			
A ^{0,b}	0.0992 ± 0.0016	0.1038			
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742		•	
A _b	0.923 ± 0.020	0.935			
A _c	0.670 ± 0.027	0.668			
A _l (SLD)	0.1513 ± 0.0021	0.1481		+	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314			
m _w [GeV]	80.385 ± 0.015	80.377			
Г _w [GeV]	2.085 ± 0.042	2.092	•		
m _t [GeV]	173.20 ± 0.90	173.26	•		
March 2012		7	0	1 2	3

Fits m_t too using radiative corrections!

Global Fits to Electroweak Data

Indirect Limits

- They come from loops
 - Test consistency of SM
- Good: Sensitive to new physics in loops
- Bad: Lots of possibilities

Indirect Limits

- Used to be able to play off M_h vs new physics effects
- BSM physics strongly restricted by light Higgs

Higgs Production at a Hadron Collider

M_h=125 GeV, σ (gg→H) at 7 TeV: 15.3 pb at 8 TeV: 19.5 pb at 14 TeV: 49.9 pb

Production Mechanisms in Hadron Colliders

- Gluon fusion
 - Largest rate for all M_h at LHC and Tevatron
 - Gluon-gluon initial state
 - Sensitive to top quark Yukawa λ_t

In Standard Model, b-quark loop contribution small

Gluon Fusion

- Lowest order cross section:
 - $-\tau_q$ =4m_q²/M_h²
 - Light Quarks: $F_{1/2} \rightarrow (m_b/M_h)^2 \log^2(m_b/M_h)$
 - Heavy Quarks: $F_{1/2} \rightarrow -4/3$

$$\hat{\sigma}_{gg \to h}(\hat{s}) = \frac{\alpha_s(\mu_R)^2}{1024\pi v^2} \left| \sum_q F_{1/2}(\tau_q) \right|^2 \delta(1 - \frac{M_h^2}{\hat{s}})$$

- Rapid approach to heavy quark limit: Counts number of heavy fermions
- NNLO corrections calculated in heavy top limit

Gluon Fusion

- Heavy fermions give mass independent contribution to gluon fusion.....no decoupling
- This statement tests source of fermion mass from Yukawa

$$L_t = -\frac{m_t}{v} \overline{t} t \left(h + v \right)$$

 ggh described by effective Lagrangian (which can be used for higher order corrections)

What if there were a SM 4th generation?

 Each fermion would contribute the same to gg >h: t, T, B (in heavy fermion limit)

$$\sigma \to \sigma_{SM} (1+1+1)^2 \to 9\sigma_{SM}$$

Important: Contribution from chiral fermions roughly independent of fermion mass

> SM 4th generation is ruled out by Higgs observation!

Gluon Fusion at Higher Order

• Dominant production mode is $gg \rightarrow h$

- NNLO in heavy mt limit (checked in Mh/mt expansion)
- Exact t,b loops at NLO
- N³LL resummation
- EW and mixed EW/QCD corrections

Hadronic Collisions

$$\sigma(pp \to X) = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \hat{\sigma}(ij \to X)$$

Dominant Higgs contribution is $gg \rightarrow h$

- PDFs to NNLO
- NNPDFs, CT10, MSTW are global fits

Differences between sets larger than PDF errors of a given set

PDF sets give consistent NNLO predictions

Scale variations

- 2 unphysical scales in hadronic cross sections
- Renormalization scale μ_R : $\alpha_s(\mu_R)$, log(μ_R/M_h)
- Factorization scale μ_F : $f_i(x,\mu_F)$
- To any given order in $\alpha_{\rm s},\,\mu$ dependence vanishes
- Hence scale dependence often used as estimate of theory uncertainty
 - No "right" scale
 - Want to pick scale to minimize logarithms

Radiative Corrections are Large

 $K_{NNLO} \sim 2.5$

[Anastasiou, et al, arXiv: 1202.3608]

S. Dawson

Scale Dependence

- µ dependence would cancel in all orders result
- Scale variation can underestimate uncertainties

Exclusive Higgs Cross Sections

- Classify Higgs signal by number of jets
 - Require $p_T^{jet} < p_T^{cut}$
 - pp → h + 0 jets
 - pp → h + 1 jet
 - pp → h + 2 jets

p_T^{cut} introduces new uncertainties

- Backgrounds vary with number of jets
 - Optimize analysis for different jet bins

Vetoing Jets

Jet veto changes form of perturbation theory

$$\sigma(0 \ Jet) = \sigma(p_T^{cut}) \sim \sigma_B \left(1 - (..)\alpha_s \ln^2 \frac{p_T^{cut}}{M_H} + \dots \right)$$

- Logarithms can be large
- Varying scale in total cross sections underestimates scale uncertainties due to cancellations
- Better estimate: treat inclusive cross section errors as independent: $\Delta_{total}, \ \Delta_{\geq 1}, \Delta_{\geq 2}$

Fixed Order Predictions Have Large Uncertainties

Where do uncertainties come from?

- Unknown higher order terms (TH)
- Scale dependence (TH)
- PDFs/ α_s (TH + EXP)
- Other parameters: m_b, (TH+EXP)
- Effects of cuts (TH + EXP)
 - Do cuts script the result?
- BSM effects (TH)

$$\sigma = \sum_{ij} f_i(x_1) f_j(x_2) \hat{\sigma}_{ij}(\hat{s}, \alpha_k, M_n, cuts...)$$

The Role of b-loops

Gluon fusion rate mostly depends on top yukawa

b loops are ~5% of SM gg \rightarrow h

[Anastasiou, Buehler, Herzog, Lazopoulos]

Bottom line on $gg \rightarrow h$

- Largest production mode
- Well understood theoretically
 - ± 7% scale uncertainty
 - ± 7% PDF as uncertainty
 - Total uncertainty ~ ±25% when jet veto uncertainty included
- Could be sensitive to new colored states
 - Production is (almost all) proportional to tth Yukawa coupling
 - Measured rate looks "SM like"