New Era of Higgs Physics S. Dawson Lecture 3, Fermilab 2012

- Vector Boson Fusion and Higgs-strahlung
- Characterize this Higgs-like object
 - What are its couplings? (remember in SM no freedom to adjust these)
 - What are the spin/parity properties?
 - Theoretical issues with the Higgs mechanism

The decade of precision Higgs physics

M_h=125 GeV, σ (gg→H) at 7 TeV: 15.3 pb at 8 TeV: 19.5 pb at 14 TeV: 49.9 pb

Vector Boson Fusion

- Sensitive to VVh couplings
- Remember:

 $-g_{WWh}=gM_W=2M_W^2/v, g_{ZZh}=gM_Z/cos \theta_W=2M_Z^2/v$

 Interaction vanishes if v=0 (not true for fermion Higgs Yukawa couplings!)

Changing ratio of g_{WWh}/g_{ZZh} implies isospin violation... must be small variation from SM

Vector Boson Fusion

- W⁺W⁻ \rightarrow X is a real process: $\sigma_{pp \rightarrow WW \rightarrow X}(s) = \int dz \frac{dL}{dz} \Big|_{pp/WW} \hat{\sigma}_{WW \rightarrow X}(zs)$
- Rate increases at large s: σ≈(1/ M_W²)log(s/M_W²)
- Integral of cross section over final state phase space has contribution from W boson propagator:

$$\int \frac{d\theta}{\left(k^2 - M_W^2\right)^2} \approx \int \frac{d\theta}{\left(2EE'\left(1 - \cos\theta\right) + M_W^2\right)^2} \quad \text{Peaks at small } \theta$$

• Outgoing jets are mostly forward and can be tagged

Vector Boson Fusion

- Idea: Tag 2 high-mass jets with large rapidity gap in between
- No color flow between tagged jets suppressed hadronic activity in central region

Distinctive Distributions in VBF

- Higgs decay products are central
- Tagging jets are forward with large energy, small p_T and produced at small angle $\eta = \frac{1}{2} \log \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right)$

Is VBF a different process from gluon fusion?

- Can we separate VBF from gluon fusion?
 - Would like to do this for coupling measurements

Both part of higher order contribution to Higgs plus 2 jet production

Cuts can effectively isolate VBF like diagrams from gluon fusion contributions

W(Z)-strahlung

- W(Z)-strahlung (qq→Wh, Zh) important at Tevatron
 - Same couplings as vector boson fusion
 - Rate proportional to weak coupling
- Theoretically very clean channel
 - Important at the Tevatron
 - Can be used for high $p_{\scriptscriptstyle T}$ Higgs at the LHC

CDF & D0 Searches

Excess at low Higgs mass in h \rightarrow bb channel 3.3 σ

Tevatron Higgs Search

 Tevatron data are compatible with SM Higgs boson production in the mass range

120 GeV < M_h < 135 GeV

in all studied channels

Higgs Decays

Higgs Decays to W/Z

- Tree level decay $\Gamma(h \rightarrow W^+W^-) = \frac{\alpha}{16s_W^2} \frac{M_h^3}{M_W^2} \sqrt{1 - x_W} \left(1 - x_W + \frac{3}{4}x_W^2\right) \qquad x_W = 4\frac{M_W^2}{M_h^2} \qquad h_{-----} \sqrt{1-x_W} \left(1 - x_W + \frac{3}{4}x_W^2\right) \qquad x_W = 4\frac{M_W^2}{M_h^2} \qquad h_{-----} \sqrt{1-x_W} \sqrt{1 - x_W} \left(1 - x_W + \frac{3}{4}x_W^2\right) \qquad x_W = 4\frac{M_W^2}{M_h^2} \qquad h_{-----} \sqrt{1-x_W} \sqrt{1 - x_W} \sqrt{1 - x_W}$
 - \rightarrow ff' implied
 - Final state has both transverse and longitudinal polarizations

Below threshold rates become quite small: $BR(h \rightarrow ZZ \rightarrow 4 \text{ leptons})=2 \times 10^{-4}$

Higgs decays to VV

• $\Gamma_{VV} \sim M_{H}^{3}$ comes from longitudinal gauge modes

$$A(h \to W_L^+ W_L^-) = \frac{2M_W^2}{v} \epsilon_L^+ \cdot \epsilon_L^- \qquad \epsilon_L \sim \frac{p_W}{M_W}$$
$$A(h \to W_L^+ W_L^-) \sim -\frac{M_H^2}{v}$$
$$\Gamma_{WW} \to \frac{G_F M_H^3}{8\pi\sqrt{2}}$$

Heavy Higgs is very broad

Higgs Decays to Gluons

- Top quark contribution most important
 - Doesn't decouple for large mt
 - Decoupling theorem doesn't apply to particles which couple to mass (ie Higgs!)
 - Decay sensitive to extra generations

$$\Gamma(h \rightarrow gg) \approx \frac{\alpha_s^2 \alpha}{72\pi^2 s_W^2} \frac{M_h^3}{M_W^2} + O\left(\frac{M_h^2}{M_t^2}\right)$$

Higgs Decays to Photons

- Dominant contribution is W loops
- Contribution from top is small

Note opposite signs of t/W loops

Higgs decays to gauge bosons

Higgs Branching Ratios to Gauge Boson Pairs

Suppose we want to enhance $h \rightarrow \gamma \gamma$?

- Rescale top quark Yukawa: $c_F \frac{m_t}{w} \bar{t} th$
- Rescale W Yukawa: $c_V g M_W W^{+\mu} W_{\nu}^{-} h$

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma(h \to \gamma \gamma)}_{SM} \sim \left(1 - .2 \frac{c_F}{c_V}\right)^2$$

 Or put something (without color) in loop to enhance rate...popular theorist's sport

Total Higgs Width

- Small M_h, Higgs is narrower than detector resolution
- As M_h becomes large, width also increases
 - No clear resonance
 - For M_h ~1.4 TeV,

 $\Gamma_{tot}\,{\sim} M_h$

$$\Gamma(h \to W^+ W^-) \approx \frac{\alpha}{16 \sin^2 \theta_W} \frac{M_h^3}{M_W^2}$$
$$\approx 330 GeV \left(\frac{M_h}{1TeV}\right)^3$$

Production + Decay

Higgs Mass from Bump Hunting

Use this technique for h $\rightarrow \gamma\gamma$ and h $\rightarrow ZZ$

 $\Gamma_{h} \sim MeV$

Can't reconstruct mass in $h \rightarrow W^+W^-$

ATLAS

Is it a (the) Higgs?

- How do we know what we've found?
- Measure couplings to fermions & gauge bosons

$$\frac{\Gamma(h \to b\overline{b})}{\Gamma(h \to \tau^+ \tau^-)} \approx 3 \frac{m_b^2}{m_\tau^2}$$

• Measure spin/parity

$$J^{PC} = 0^{++}$$

• Measure self interactions

$$V = \frac{M_h^2}{2}h^2 + \frac{M_h^2}{2v}h^3 + \frac{M_h^2}{8v^2}h^4$$

Parameterize deviations from SM

Many possible parameterizations (only some terms shown here)

$$L \sim c_V \left(M_W^2 W_{\mu}^+ W^{-\mu} + \frac{M_Z^2}{2} Z_{\mu} Z^{\mu} \right) \frac{2h}{v} - c_t m_t \bar{t} t \frac{h}{v} - c_b m_b \bar{b} b \frac{h}{v} + \frac{g^2}{16\pi^2} \left(F_{\mu\nu} F^{\mu\nu} c_{\gamma\gamma} + G_{\mu\nu} G^{\mu\nu} c_{gg} \right) \frac{h}{v} + \dots$$

- In Standard Model, $c_V = c_t = c_b = 1$, $c_{\gamma\gamma} = c_{gg} = 0$
- No FCNC in Higgs sector parameterization
- No isospin violation in Higgs sector parameterization
- Assume no new light states

Coupling Measurements

- Production:
 - Gluon Fusion

 $\sigma_{ggh} \sim c_t^2, c_b^2, c_{gg}$

-VBF

$$\sigma_{VBF} \sim c_V^2$$

Decay

• $h \rightarrow \gamma \gamma$: c_F , c_V , $c\gamma\gamma$

- h→bb: c_F
- Could include decay to invisible particles
 - Desirable to explain dark matter
 - Severely restricted by current measurements

Measuring Higgs Couplings

• SM coupling measurements with 30 fb⁻¹ at 14 TeV

• Parameterize couplings in terms of deviation from SM $- \Delta_F = c_F - 1$, $\Delta_V = c_V - 1$

Coupling measurements: Rauch, arXiv:1110.1196; Lafaye, Plehn, Rauch, Zerwas, arXiv: 0904.3806

How well can we do with couplings?

5-10% uncertainties on couplings with 300 fb⁻¹

Some channels ($c\overline{c}$, $\mu^+\mu^-$) extremely difficult at LHC mostly due to low rates

Can we reconstruct the Higgs potential?

$$V = \frac{M_h^2}{2}h^2 + \lambda_3 vh^3 + \frac{\lambda_4}{4}h^4$$
$$SM : \lambda_3 = \lambda_4 = \frac{M_h^2}{2v^2}$$

- Fundamental test of model!
- We have no idea how to measure λ_4

Double Higgs Production

• Sensitive to hhh coupling, $\lambda_{hhh} = 3 M_h^2/M_Z^2$

Contributions tend to cancel

 σ ~ 2 fb (then you need branching ratios to observable final states....)

CP Properties

- Look at $h \rightarrow ZZ^* \rightarrow |+|-|+|^-$
- Angular correlations depend on J^{PC}
- Compare predictions for 0⁺⁺ with 0⁺⁻ boson
- Remember rate is small

CP Properties

- In vector boson fusion measure angle between tagging jets
- Sensitive to CP properties

[Zeppenfeld]

Scalar vs pseudoscalar: How well can we distinguish?

Spin properties of Higgs-like Particle

- $h \rightarrow \gamma \gamma$, so it can't be spin 1
- Could be spin 0 or spin 2
- Look at $h \rightarrow ZZ \rightarrow |+|-|+|^{-1}$
- Angular correlations are different for spin 0 and spin 2
- VBF, $h \rightarrow W^+ W^- \rightarrow I_V I_V$
- Leptons from W decays tend to go in the same direction*

*Used in event selection

Spin Measurements

- $h \rightarrow W^+W^- \rightarrow I_V I_V$
- Angular correlation of outgoing particles in $h \rightarrow ZZ \rightarrow 4I$

Bottom Line

- With 30 fb⁻¹, should have a good handle on J^{PC}
- Coupling measurements at the 25% level in many channels

So are we done?????

Higgs Searches in e+e- Colliders

- LEP2 searched for e⁺e⁻→Zh
- Rate turns on rapidly after threshold, peaks just above threshold, $\sigma \sim \beta^3/s$
- Measure recoil mass of Higgs; result independent of Higgs decay pattern
- Momentum conservation:
 - $(P_{e} + P_{e} P_{z})^{2} = P_{h}^{2} = M_{h}^{2}$
 - s-2 $\sqrt{s} E_z + M_z^2 = M_h^2$

LEP2 limit, M_h > 114.1 GeV

Coupling measurements at future colliders

LHC: 300 fb⁻¹ at 14 TeV HLC: 250 fb⁻¹ at 250 GeV ILC: 500 fb⁻¹ at 500 GeV ILCTeV: 1 ab⁻¹ at 1 TeV

[Peskin, 1207.2516]

What do we learn from the observation of a 125 GeV Higgs (like) boson?

Why we think there might be something else..... Why particle physics isn't done....

The Standard Model Works

 Any discussion of the Standard Model has to start with its success

- This is unlikely to be an accident!
- It's not perfect
 - •Chimney plot: Consistency of the Standard Model
 - •Higgs mass renormalization
 - Unitarity constraints

Is the Standard Model Self-Consistent?

- M_h is a free parameter in the Standard Model
- Can we derive limits on the basis of consistency?
- Consider a scalar potential:

$$V = \frac{M_h^2}{2}h^2 + \frac{\lambda}{4}h^4$$

- This is potential at electroweak scale
- Parameters evolve with energy in a calculable way

Standard Model: $\lambda = M_h^2/(2v^2) = .13$ for $M_h = 125$ GeV

Perturbative Regime

Higgs Potential for Large h

- Self interactions of Higgs cause λ to grow at high energy

• Top interactions decrease λ at high energy Trace

Trade-off

High Energy Behavior of λ

• Renormalization group scaling

$$16\pi^2 \frac{d\lambda}{dt} = 12\lambda^2 + 12\lambda g_t^2 - 12g_t^4 + (gauge)$$

$$t = \log\left(\frac{Q^2}{\mu^2}\right) \qquad \qquad g_t = \frac{M_t}{v}$$

- Large λ (Heavy Higgs): self coupling causes λ to grow with scale
- Small λ (Light Higgs): coupling to top quark causes λ to become negative

Does Spontaneous Symmetry Breaking Happen?

- SM requires spontaneous symmetry breaking
- This requires

- For small λ

$$16\pi^2 \frac{d\lambda}{dt} \approx -12g_t^4$$

Solve

$$\lambda(\Lambda) \approx \lambda(v) - \frac{3g_t^4}{4\pi^2} \log\left(\frac{\Lambda^2}{v^2}\right)$$

Does Spontaneous Symmetry Breaking Happen?

• $\lambda(\Lambda) > 0$ gives lower bound on M_h

• For any given M_h , there is an upper bound on Λ

[DeGrassi et al, 1205.6497]

Don't want λ to be infinite

- Point where $\lambda \rightarrow \infty$ called Landau pole
- Without λh^4 interactions, theory is non-interacting
- Require quartic coupling be finite gives upper bound

$$\frac{1}{\lambda(\Lambda)} > 0 \qquad \qquad M_h^2 < \frac{32\pi^2 v^2}{9\log\left(\frac{\Lambda^2}{v^2}\right)}$$

Maybe vacuum can be unstable if lifetime is longer than lifetime of the universe

[Ellis,0906.0954]

