

TRACKING DETECTORS

Lecture 1 Basics: propagation of particles in media and measurements

Lecture 2 Main tracking detector concepts and examples of their use

Lecture 3 Overview of muons systems at collider experiments

Recent colliders

Туре	∼sqrt(s)	Colliders
ee	few-10 GeV	a whole bunch, including B-factories
	100 GeV	LEP
	1000 GeV	future ILC
рр	0.5 TeV	SppS
	2 TeV	Tevatron
	10 TeV	LHC
ер	300 GeV	HERA

20+ collider detectors...

POPMANED

8

SUPERCONDUCTING

ME OF FLICH

Andrey Korytov (UF)

Generic collider detector layout

20+ collider experiments... but only 3 distinct muon system concepts

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBar Belle CLEO BES KEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		L3
	1000 GeV (ILC)	LDC GLD SiD		4th
	0.5 TeV (SppS)	UA1		
рр	2 TeV (Tevatron)	CDF	D0	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Requirements and basic parameters

- Large area (cost)
 - from 1000 m² to above 10,000 m² (hectares)
- Low rates, relatively low that is...
 - from cosmic rates (0.01 Hz/cm²) to 1 kHz/cm²
- Precision requirements
 - from ~1 cm to $<100 \ \mu m$
- Number of readout channels
 - from 1K to 1M
- Trigger
 - from NO to YES with a few ns accuracy and <0.5 μs latency

Detector technologies

Tubes	RPC	
MWPC	Scint	

DETECTORS	READOUT
Tubes	yes/no drift time wire charge division induced cathode charge
MWPC	yes/no drift time induced cathode charge
RPC	yes/no
Scintillators	yes/no

Tubes	RPC
MWPC	Scint

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBar Belle CLEO BES KEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		L3
	1000 GeV (ILC)	LDC GLD SiD		4th
	0.5 TeV (SppS)	UA1		
рр	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Tubes	RPC	
MWPC	Scint	

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBar Belle CLEO BES KEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		L 3
	1000 GeV (ILC)	LDC GLD SiD		4th
	0.5 TeV (SppS)	UA1		
рр	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Tubes	RPC	
MWPC	Scint	

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBar Belle CLEO BES KEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		<u>L3</u>
	1000 GeV (ILC)	LDC GLD SiD		4th
	0.5 TeV (SppS)	UA1		
рр	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Tubes	RPC	
MWPC	Scint	

		O Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBarBelleCLEOBESKEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		 13
	1000 GeV (ILC)	LDC GLD SiD		4th
рр	0.5 TeV (SppS)	UA1		
	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Tubes	RPC	
MWPC	Scint	

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBarBelleCLEOBESKEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		13
	1000 GeV (ILC)	LDC GLD SiD		4th
рр	0.5 TeV (SppS)	UA1		
	2 TeV (Tevatron)		D0	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Tubes	RPC	
MWPC	Scint	

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBarBelleCLEOBESKEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		L 3
	1000 GeV (ILC)	LDC GLD SiD		4th
pp	0.5 TeV (SppS)	UA1		
	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
ee	few-10 GeV	BaBarBelleCLEOBESKEDR		
	100 GeV (LEP)	ALEPH DELPHI OPAL		L3
	1000 GeV (ILC)	LDC GLD SiD		4th
рр	0.5 TeV (SppS)	UA1		
	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

OPAL

Barrel: 30 cm Drift Tubes

Endcaps: Iarocci Tubes

August 8, 2012

Andrey Korytov (UF)

OPAL: barrel muon chambers

- field-shaping electrodes (25% of insulator is exposed—takes a few hrs to charge up)
- only ~1K readout channels
- resolution
 - <u>~1 mm coordinate resolution</u> from drift time
 - ~2 mm along wires (charge division, vernier pads)

DELPHI used conceptually similar design (10 cm drift) for its entire muon system

- 1 x 1 cm² cells
- 1 cm wide strips on both sides (across and along wires)
- 42K readout channels
- resolution:

<u>~1 mm coordinate resolution</u> along wires (induced charge on 1 cm strips)
~3 mm across wires (yes/no from 1 cm strips)

ALEPH, CLEO used larocci tubes throughout their whole muon systems **ZEUS, H1** used larocci tubes for most of their muon systems

Andrey Korytov (UF)

L3: barrel muon chambers

Andrey Korytov (UF)

L3: 30-mm alignment of chambers

• passive alignment:

5-µm accurate bridges for wires

• active alignment:

wire straightness monitor within a chamber rφ-alignment of three chambers laser beacon to monitor torsion

• validation:

radial laser beam (equivalent of a straight track) cosmic ray muons (B=0)

L3: forward muon chambers

endcaps of magnet yoke are magnetized

- 3 layer of precision chambers: Multi Wire Cell Chambers (3 layers each)
- resolution: <u>~250 μm resolution</u> per wire (drift time)
- 2 layers of RPCs for trigger (first use of RPCs in collider experiments)

Classical muon ID-only

- RPCs in iron muon filter (although there is B, no momentum measurement is intended and strips are made very wide)
- Momentum is from central tracker

$$\frac{\delta p}{p} = 1.3 \cdot 10^{-3} p \oplus 0.0045$$

BaBar: RPCs

BaBar: RPC (Lesson 1)

Three of 4 ILC Detector Concepts

LDC, GLD, SiD

Muon ID only: RPC is a favorite choice ~1 cm resolution (3 cm strips) ~4,000 m² area ~100K readout channels

Momentum measurement from a main tracker (TPC or Si):

$$\frac{\delta p}{p} = 2 \cdot 10^{-5} p$$

RPC

TRACKER

MUON ID ONLY

The 4th ILC Detector Concept

Muon air-core spectrometer:

- Dual solenoid and end coils form "two co-axial fields"
- Muon system resides in the outer annulus field
- Precision cylindrical drift tubes (ATLAS design): ~80 µm resolution

Momentum measurement:

p

Tubes

TRACKER

AIR-CORE ECTROMET

Momentum Resolution comparison

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBar Belle CLEO BES KEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		L3
	1000 GeV (ILC)	LDC GLD SID		4th
pp	0.5 TeV (SppS)	UA1		
	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

UA1 at SppS

UA1 Muon Chambers

CDF-I at Tevatron Run 1

Tubes

Scint

TRACKER

MUON ID ONLY

CDF-I: Central Muon System

CENTRAL MUON

(right after calorimeters, only 5.4 λ)

- Single Wire Cell Chambers
- dx \sim 250 μm (from drift time)
- dz ~ 1.2 mm (from charge division)

$$\frac{\delta p}{p} = 2 \cdot 10^{-3} p$$

Momentum resolution from the tracker:

CDF-I: Central Muon Upgrade (Lesson 2)

CENTRAL MUON

- right after calorimeters, only 5.4 λ
- direct π punchthrough probability ~0.5%

CENTRAL MUON UPGRADE

- after magnet return yoke (60 cm, +3.5λ)
- direct π punchthrough probability ~10⁻⁴
- 4 layers of Drift Tubes

CENTRAL MUON EXTENSION

- extends η-coverage
- same detector technology
- sandwiched between scintillator counters

CDF-I: Forward Muon System (Lesson 3)

FORWARD MUON

- use magnetized iron toroids to measure muon p
- rely on field shaping made by charged up large area of an insulator (recent idea of electrodeless drift chambers from Manchester: NIM 201 (1982) 341)
 used by IADE (OPAL in a limited extent
- used by JADE/OPAL in a limited extent

- Proved to be unreliable in environment of <u>high</u> and <u>variable</u> rates (difficult to maintain gas gain and efficiency equilibrium across the system and in time)
- Discarded for Run II

CDF-II at Tevatron Run II

Discard Forward Muon System

Double η -coverage of the central region

Same technology as already used in CDF-I:

- Drift Tubes
- Scintillators

D0-I: Proportional Drift Tubes

IRON-CORE SPECTROMETER

- WIDE ANGLE PDTs proportional drift tubes of rectangular shape
 - precise coordinate from drift time
 - induced charge from Vernier pads on Glasteel substrate for hit coordinate along the wire
- SMALL ANGLE PDTs classical round proportional drift tubes

D0-I: Proportional Drift Tubes (Lesson 4)

(these aged wire images are for illustration purposes only, they are not from D0)

Fast aging observed:

- crud formed on wires (traced to outgassing from Glasteel)
- zapping wires with "just right" discharge allowed to save barrel chambers
 - too low charge would solidify the crud on wires
 - too high charge would melt gold on wires
 - "just right" discharge would evaporate the crude

D0-I: Forward Drift Tubes (Lesson 5)

Backgrounds at small polar angles are very high

D0-II at Tevatron Run II

 Small angle muon system is replaced with shielding

Tubes

Scint

TRACKER

IRON-CORE

•Forward muon chambers are replaced with Aluminum **Iarrocci Drift Tubes** (mini-drift tubes)

Muon System: iron-core spectrometer

- Barrel: Drift Tubes + RPCs
- Endcap: Cathode Strip Chambers + RPCs

CMS: Drift Tubes (barrel)

Iron-core spectrometer

- 250 chambers, 12 layers each
- 200K channels
- 250 μm resolution (drift time)
- self-triggering using mean-timers (high p_T)

RPCs help trigger at lower \boldsymbol{p}_{T} and add redundancy

Andrey Korytov (UF)

CMS: Cathode Strip Chambers (endcaps)

Iron-core spectrometer

- CSCs first time at this scale
- 540 chambers, 6 layers each
- 500K channels
- 6,000 m² sensitive area
- ~300 μm resolution (induced charge)
- self-triggering

RPCs add redundancy

CMS: RPCs (barrel and endcap)

RPCs

- a la BaBar design, but: double gap and operate in prop mode
- extensive aging studies show no aging
- 1000 chambers
- 150K readout channels

Used mostly for redundancy: trigger and pattern recognition

ATLAS

Muon System:

Tubes

MWPC

RPC

TRACKER

AIR-CORE PECTROMETER

• air-core spectrometer

Barrel:

- Monitored Drift Tubes
- RPCs

Endcap:

- Monitored Drift Tubes
- MWPC (Thin Gap Chambers)

Very Forward:

• Cathode Strip Chambers

ATLAS: Monitored Drift Tubes

Air-core spectrometer

- 3 cm pressurized tubes-basic element
- \bullet 80 μm resolution per tube
- 1200 chambers, 6 layers each
- 400K 3-cm tubes
- 5,500 m² active area

ATLAS: 20-mm MDT alignment

- In-plane alignment for chamber deformations (calibrated)
- <u>Projective alignment</u> for relative positions of 'triplets' (20 μm)
- Axial alignment to limit number of projective rays (20 μm)
- + Proximity sensors to couple between adjacent structures

ATLAS: Thin Gap Chambers

Andrey

Trigger Detector

- 6,600 m² of single plane area (two planes per chamber)
- 440K readout channels
- 5 mm granularity

1.6 mm G-10

1.4 mm

ATLAS: RPCs

Trigger Detector

- a la BaBar design, but in proportional mode
- 7,200 m² of single plane area (two planes with two-side readout per chamber)
- 355K readout channels (3 cm strips)

Momentum Resolution comparison

MUON-ID ONLY

- 1,368 MWPCs (total sensitive area 435 m²), 80 kHz/cm²
- 24 Triple-GEM detectors (each 24x20 cm²), 500 kH/cm²
- 120K readout channels

Tubes	RPC	
MWPC	Scint	

		Muon ID only	Iron-core spectrometer	Air-core spectrometer
	few-10 GeV	BaBarBelleCLEOBESKEDR		
ee	100 GeV (LEP)	ALEPH DELPHI OPAL		L3
	1000 GeV (ILC)	LDC GLD SiD		4th
pp	0.5 TeV (SppS)	UA1		
	2 TeV (Tevatron)	CDF	DO	
	10 TeV (LHC)	LHCb	CMS	ATLAS
ер	300 GeV (HERA)		H1 ZEUS	

Summary

- Muon systems allow for
 - sensitive area: 10,000 m²
 - muon identification: a must
 - measuring its parameters: none, crude, precise
 - Triggering: yes or no

Most popular recent technological choices

- drift tubes (in various reincarnations)
- multi-wire proportional chambers (with strip readout)RPCs

A few lessons learned hard way...