New Physics Beyond the Standard Model

Lian-Tao Wang University of Chicago

Fermilab, HCPSS 2012, August 2012

TeV frontier at the LHC

 Search is on for new physics beyond the Standard Model.

The Standard Model

 Electroweak symmetry breaking: weak interaction has finite range

$$V_{\text{weak}}(r) \approx \frac{e^{-r/r_{\text{W}}}}{r}, \ r_{\text{W}} \approx m_{\text{W,Z}}^{-1} \approx 10^{-17} \text{ m}$$
 Fermi, 1934

rizontaling the horizon:

• What do we expect at the energy frontier?

New physics beyond the SM?

- Why not?
 - Sure. But we may want to have better arguments, and we do (main goal of these lectures).
- At Hadron colliders, such as the LHC, we need to anticipate what may be there.

Scenarios, frameworks, models...

 BSM: beyond the SM, besides the SM, below the SM,

These lectures

- A quick survey of BSM new physics.
- Focus on
 - Motivation.
 - Basic ideas, interesting scenarios.
 - ▷ Signals at hadron colliders (mainly LHC).
- Would not cover all technical details.
 - See excellent lectures in previous schools.
- Related lectures in this school
 - Sally Dawson: Electroweak theory
 - Roni Harnik: Dark Matter

Standard Model needs to be extended.

Growing stronger at higher energy. Perturbative unitarity breaks down.

- Therefore, this picture is not valid at $E \sim 4\pi m_W/g_W \simeq \text{TeV}$
- Something new must happen before TeV scale.
- Simplest new physics:
 - The Higgs boson, a spin-0 neutral particle.
 - Higgs field can give mass to both electrons and gauge bosons (W, Z).

Higgs discovered! (likely)

2011-2012 Exp

2011 Fyn

Monday, August 6, 12

We have solid evidence that dark matter:

 Ω_{M}

- Exists
- gravitates.
- is dark.

3

We have solid evidence that dark matter:

 Ω_{M}

- Exists
- gravitates.

3

• is dark.

Cannot be SM particle !

TeV dark matter:WIMP miracle.

Freeze out: dropping out of thermal eq. Stronger coupling, lower abundance.

- If dark matter is
 - Weakly interacting: $g_{
 m D}\sim 0.1$
 - Weakscale: $m_{\rm DM} \sim 100 {\rm s~GeV} 1 {\rm ~TeV}$
 - We get the right relic abundance of dark matter.
- A major hint of TeV scale new physics.
 - We can produce and study them at the LHC!

Naturalness puzzle.

 The masses of W, Z gauge bosons are very different from any known scale. For example, the quantum gravity scale:

$$m_{\rm W,Z} \ll M_{\rm Planck} \simeq 10^{19} {\rm GeV}$$

- The question is more serious than just this apparent disparity between scales.
 - Is this generic or plausible in a quantum theory? No.

Weak scale in the SM

Simplest implementation

$$V(\phi) = \frac{1}{2}\mu_h^2\phi^2 + \frac{\lambda}{4}\phi^4$$

 $\phi: \begin{tabular}{ll} Charged under weak interaction. \\ \phi: \begin{tabular}{ll} Order parameter of EW phase \\ transition. \\ \end{tabular}$

$$\phi \to \frac{1}{\sqrt{2}}(v+h(x)) \quad m_h = \sqrt{2\lambda}v = \sqrt{\lambda}\left(2\sqrt{2}\frac{m_W}{g_W}\right)$$

Weak scale in the SM

Weak scale in the SM

Scalar (Higgs) mass in quantum theory

 Λ : cut-off, limit of validity of theory scale at which new physics enters

Scalar (Higgs) mass in quantum theory

 Λ : cut-off, limit of validity of theory scale at which new physics enters

- Renormalization
 - ▶ m_h^2 (physical) = m_0^2 + c Λ^2
- Counter term m₀² can always be adjusted to give correct m_h² (physical).

The problem is

- m_h^2 (physical) = m_0^2 + c Λ^2 , c some O(0.01) number
- What is Λ ?
 - Some fundamental scale beyond the Standard Mode.
 - ▷ $\Lambda \approx M_{Pl}$?
- $\Lambda^2 \approx M_{\text{Pl}}^2$, m_0^2 must be very close to M_{Pl}^2 . At the same time, they must cancel to the precision of 10^{-32} to have m_h^2 (physical) $\approx (100 \text{ GeV})^2$, fine-tuning.

- Other cut offs?
$$\Lambda_{GUT} \approx 10^{16}$$
 GeV,

Is this plausible?

- m_h^2 (physical) = m_0^2 + c Λ^2
- In Quantum field theory, we understood this as
 - ▶ m_h^2 (physical): mass at weak scale ~ 100 GeV.
 - ▷ Counter term m_0^2 : mass for theory at scale Λ
 - \triangleright c Λ^2 : correction to mass due to physics between Λ and weak scale.
- m_0^2 and c Λ^2 come from very different physical origins. Why should they cancel so precisely?

The lesson

The lesson

- Maybe Quantum Field Theory is wrong.
 - Maybe. However, the predictions of QFT, in particular "those loops", are the most precisely tested scientific predictions ever made.
 - "those loops" are among the greatest successes of the Standard Model of particle physics.

The lesson

- Maybe Quantum Field Theory is wrong.
 - Maybe. However, the predictions of QFT, in particular "those loops", are the most precisely tested scientific predictions ever made.
 - "those loops" are among the greatest successes of the Standard Model of particle physics.
- So, we take it seriously.
 - ▶ m_h^2 (physical) = m_0^2 + c Λ^2
 - No fine-tuning: m_h^2 (physical) ~ m_0^2 ~ c Λ^2

 $\Lambda \approx 100$ s GeV - TeV Naturalness criterion leads to a prediction of the mass scale of new physics!! Does this work?

- Example: low energy QCD resonances: pion
- $m_{\pi} \sim 100$ MeV.
- Naturalness requires $\Lambda \approx \text{GeV}$.
 - Indeed, at GeV, QCD \Rightarrow theory of quark and gluon
 - Pion is not elementary.

Another example: electron mass

- Linearly divergent.
- Need new physics below $\Lambda \sim \alpha^{-1} m_e$

New physics: the positron

- Extension of spacetime symmetry:
 - Lorentz symmetry + quantum mechanics ⇒ positron, doubling the spectrum!
- Log divergence (very mild).
- Proportional to m_e .

New physics: the positron

- Extension of spacetime symmetry:
 - Lorentz symmetry + quantum mechanics ⇒ positron, doubling the spectrum!
- Log divergence (very mild).
- Proportional to m_e .

Fermion mass is natural!

Scale of new physics

- m(positron) = m(electron) (CPT).
- New physics can come in at a lower scale then necessary, for a natural theory.

- Cosmological constant: CC \approx (10⁻³ eV)⁴

- Cosmological constant: CC $\approx (10^{-3} \text{ eV})^4$
- Computing quantum field theory, most divergent
 - ▷ CC∝ Λ⁴
 - ▶ New physics at 10⁻³ eV, or at about 1 mm!
 - ▶ We have not seen them!

- Cosmological constant: CC $\approx (10^{-3} \text{ eV})^4$
- Computing quantum field theory, most divergent
 - ▷ CC∝ Λ⁴
 - ▶ New physics at 10⁻³ eV, or at about 1 mm!
 - ▶ We have not seen them!
- Doesn't mean it is not a problem. Instead, We are missing something big!
 - Missing dynamics of gravity?
 - Multiverse?

Naturalness of the weak scale. Example 1: Supersymmetry

References: S. Martin, "A supersymmetry primer", hep-ph/9709356 M. Drees, R. Godbole, P. Roy "Sparticles" World Scientific. And many more...

Supersymmetry (SUSY)

- Supersymmetry: $|boson\rangle \Leftrightarrow |fermion\rangle$
- A different kind of symmetry
 - ▶ boson, spin-0, does not transform under rotation.
 - Fermion, spin-1/2, transforms non-trivially under rotation.
 - Therefore, a symmetry which transforms boson to fermion must be a space-time symmetry, an extension of known spacetime symmetry (Poincare).

Supermultiplets.

- In writing down interactions invariant under some symmetry, it is convenient to group all states which transform into each other under the symmetry transformation together, called a multiplet.
- In supersymmetry, we use supermultiplet.
 - Will have fermionic and bosonic components, same mass.
 - SUSY commute with other global or gauge symmetries.
 - Within a supermultiplet, states have the same gauge (or global) quantum numbers (i.e., representation, charge).

Supermultiplets

- Chiral multiplet
 - On-shell: free particles.
 - complex scalar: ϕ , two on-shell degrees of freedom
 - ▶ Weyl fermion (2-component): ψ , two on-shell degrees of freedom.
- Examples of chiral multiplet
 - Starting from SM model quark (left or right handed), $q_{L,R}$
 - Adding scalar partner: squark. $ilde{q}_{L,R}$
 - Form a chiral multiplet.

Supermultiplets

- Vector multiplet (on-shell).
 - Spin-1: vector A_{μ} (massless, 2 degrees of freedom)
 - ▶ Weyl fermion: λ (2 d.o.f.)
- Example:
 - Starting with SM gauge bosons, such as the 8 gluons G^aµ (a=1, ..., 8)
 - Adding their partners, \tilde{g}^a 8 gluinos.

SUSY and naturalness

- Remember (an important part of) the problem is that scalar mass in a generic theory requires fine-tuning.
- We have also seen that fermion mass (such as electron mass) is natural.
- SUSY makes scalar mass natural by relating it to fermion mass!
- SUSY extends the spacetime symmetry, doubles the spectrum, and delivers naturalness.
 - Similar to the electron story (extending to Lorentz symmetry, introducing positron.)

First consequence of SUSY

 Each known elementary particles must belong to a supermultiplet, has a superpartner.

SM int.	gauge boson, spin-1	Super-partner, spin-1/2
$SU(3)_C$	g^a , $a = 1, 2,, 8$	gluino: \tilde{g}^a
$SU(2)_L$	$W_{1,2,3}$	wino: $\tilde{W}_{1,2,3}$
$U(1)_Y$	B_{μ}	bino: $ ilde{B}$

squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	$({f 3},{f 2},{1\over 6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{3}, 1, -\frac{2}{3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(\nu \ e_L)$	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$(1, 2, +\frac{1}{2})$
	H_d	$(H^0_d \ H^d)$	$(\widetilde{H}^0_d \ \ \widetilde{H}^d)$	$({f 1}, {f 2} , - {1\over 2})$

Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry: a theorist's dream

A new paradigm. First extension of spacetime symmetry since Einstein.

- Gauge coupling unification!
 - An unintended and amazing consequence of SUSY.

More details: for example, S. Martin "Supersymmetry Primer"

- Superpartners have the same gauge quantum numbers as their SM counter parts.
 - Similar gauge interactions.

More details: for example, S. Martin "Supersymmetry Primer"
 Superpartners have the same gauge quantum numbers as their SM counter parts.

Similar gauge interactions.

More details: for example, S. Martin "Supersymmetry Primer"
 Superpartners have the same gauge quantum numbers as their SM counter parts.

Similar gauge interactions.

- SUSY \Rightarrow additional couplings
 - strength fixed by corresponding gauge couplings.

- SUSY \Rightarrow additional couplings
 - strength fixed by corresponding gauge couplings.

- SUSY \Rightarrow additional couplings

strength fixed by corresponding gauge couplings.

- SUSY \Rightarrow additional couplings

strength fixed by corresponding gauge couplings.

- SUSY \Rightarrow additional couplings

strength fixed by corresponding gauge couplings.

- SM fermions (such as the top quark) receive masses by coupling to the Higgs boson.
 - > Yukawa couplings \Rightarrow SUSY counter parts.

Superpartners.

- We have not seen any of the superpartner yet.
 - ▶ They must be heavier than the SM particles.
- Therefore, SUSY must be a broken symmetry.
- Are we back to the beginning?
 - ▶ No.
 - SUSY can be broken in a controlled way so that the theory stays natural, soft SUSY breaking.

Superpartner mass and naturalness

- m_h^2 (physical) = m_0^2 + c Λ^2 , c some O(0.01) number.
- New physics needed at $\Lambda\approx 100s~\text{GeV}$ TeV
 - This should be the superpartner mass for a natural theory.
- At higher energies, the theory is approximately supersymmetric. Therefore, scalar mass would be be sensitive to what happens at higher energy scales.

▶ m_h^2 (physical) = m_0^2 + c m(superpartner)²

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^2 \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^2 \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}).$$

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = \underbrace{-\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \tilde{B} \widetilde{B} + \text{c.c.} \right)}_{-\left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right)}_{-\widetilde{Q}^{\dagger} \mathbf{m}_2^2 Q - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^2 \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^2 \widetilde{\overline{e}}^{\dagger}}_{-m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + \text{c.c.}).$$

Gaugino masses

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_{3} \tilde{g} \tilde{g} + M_{2} \widetilde{W} \widetilde{W} + M_{1} \widetilde{B} \widetilde{B} + \text{c.c.} \right) \\ - \left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_{u} - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_{d} - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_{d} + \text{c.c.} \right) \\ - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{2} \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^{2} \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^{2} \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^{2} \widetilde{\overline{e}}^{\dagger} \\ - m_{H_{u}}^{2} H_{u}^{*} H_{u} - m_{H_{d}}^{2} H_{d}^{*} H_{d} - \left(b H_{u} H_{d} + \text{c.c.} \right).$$

trilinear,
similar to Yukawa

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \tilde{B} \tilde{B} + \text{c.c.} \right) - \left(\tilde{u} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \tilde{d} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \tilde{e} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \tilde{u} \mathbf{m}_{\mathbf{u}}^2 \widetilde{u}^{\dagger} - \tilde{d} \mathbf{m}_{\mathbf{d}}^2 \tilde{d}^{\dagger} - \tilde{e} \mathbf{m}_{\mathbf{e}}^2 \tilde{e}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + \text{c.c.}) .$$

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^2 \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^2 \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}).$$

General parameterization

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^2 \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^2 \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}).$$

General parameterization

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \widetilde{\overline{u}} \mathbf{m}_{\mathbf{u}}^2 \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m}_{\mathbf{d}}^2 \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m}_{\mathbf{e}}^2 \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}) .$$

- > 100 parameters.
 - Too many? Have to include all of them in the most general theory.
 - Most of them, flavor mixing, CP phases, are strongly constrained to vanish.
 - A theory of SUSY breaking typically contain much less (< 10-ish) parameters.</p>

- Gauge invariance and SUSY allows for more couplings. For example

- Gauge invariance and SUSY allows for more couplings. For example

- Gauge invariance and SUSY allows for more couplings. For example

Proton decay:
$$\Gamma_{p \to e^+ \pi^0} \sim m_{\text{proton}}^5 \sum_{i=2,3} |\lambda'^{11i} \lambda''^{11i}|^2 / m_{\tilde{d}_i}^4$$

- Gauge invariance and SUSY allows for more couplings. For example

Proton decay: $\Gamma_{p \to e^+ \pi^0} \sim m_{\text{proton}}^5 \sum_{i=2,3} |\lambda'^{11i} \lambda''^{11i}|^2 / m_{\widetilde{d}_i}^4$

These couplings must be extremely tiny!

A symmetry:

- Vanishing couplings usually come from a symmetry principle.
- Could impose B ($B_{quark} = 1/3$) or L ($L_{lepton} = 1$) symmetry. Slightly uncomfortable
 - Not exact symmetries in the SM.
- An interesting choice: R-parity

$$P_R = (-1)^{3(B-L)+2s}$$

R-parity

$$P_R = (-1)^{3(B-L)+2s}$$

- All superpartners are odd under R-parity.

forbidden!

- Neutral LSP a natural candidate for WIMP dark matter.
 - ▷ O(Λ_{EW})
 - ▷ Weakly coupled.
 - Can have Similar states in other new physics scenario. With SUSY, a consequence of forbidding proton decay.

SUSY at colliders

• Superpartners must be pair produced!

SUSY at colliders

- long decay chain.
- jets, leptons, missing E_T
- Nice signal, good discovery potential.