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Figure 7.4: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.
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with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (7.7.10)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (7.7.11)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 #= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 7.4. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 7.4 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [162] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (7.7.12)

in the normalization for αa discussed in section 6.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (7.7.13)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (7.7.12) holds for the running gaugino masses at an
RG scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly
of order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to
the electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 7.5, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(
α2

4π

)2

C2(i) +
(
α1

4π

)2

C1(i)

]

, (7.7.14)

with the quadratic Casimir invariants Ca(i) as in eqs. (6.5.5)-(6.5.8). The squared masses in eq. (7.7.14)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (7.7.15)
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Figure 7.5: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

a significantly stronger condition than eq. (6.4.5). Again, eqs. (7.7.14) and (7.7.15) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 6.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (6.1.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 8.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (7.7.12) and (7.7.14) correspond to the estimate eq. (7.4.3) for
msoft, with Mmess ∼ yI〈S〉. Equations (7.7.12) and (7.7.14) hold in the limit of small 〈FS〉/yI〈S〉2,
corresponding to mass splittings within each messenger supermultiplet that are small compared to the
overall messenger mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out
[163]-[165] to be quite small unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
and !, ! are replaced by a collection of messengers ΦI ,ΦI with a superpotential

Wmess =
∑

I

yISΦIΦI . (7.7.16)

The bar is used to indicate that the left-handed chiral superfields ΦI transform as the complex conjugate
representations of the left-handed chiral superfields ΦI . Together they are said to form a “vector-like”
(real) representation of the Standard Model gauge group. As before, the fermionic components of each
pair ΦI and ΦI pair up to get squared masses |yI〈S〉|2 and their scalar partners mix to get squared
masses |yI〈S〉|2 ± |yI〈FS〉|. The MSSM gaugino mass parameters induced are now

Ma =
αa

4π
Λ
∑

I

na(I) (a = 1, 2, 3) (7.7.17)

where na(I) is the Dynkin index for each ΦI+ΦI , in a normalization where n3 = 1 for a 3+3 of SU(3)C
and n2 = 1 for a pair of doublets of SU(2)L. For U(1)Y , one has n1 = 6Y 2/5 for each messenger pair
with weak hypercharges ±Y . In computing n1 one must remember to add up the contributions for each
component of an SU(3)C or SU(2)L multiplet. So, for example, (n1, n2, n3) = (2/5, 0, 1) for q + q and
(n1, n2, n3) = (3/5, 1, 0) for ! + !. Thus the total is

∑
I(n1, n2, n3) = (1, 1, 1) for the minimal model,
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Gauge mediation

- Ma ∼ mscalar 

- MS ∼ 10 TeV ⇒ Ma ∼ mscalar ∼ TeV.

- Gravity mediation (also there), but subdominant if 
FS ≈ (ΛS)2 ≪ (1011 GeV)2 . 

- Gauge couplings, just like QED, can be flavor 
diagonal!!

Ma =
↵a

4⇡
MS , MS =

hFSi
hSi
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Gravitino LSP

- Gravitino does not have gauge interactions. Its’ 
mass is still determined by gauge mediation. 
Gravitino is the LSP.

- MSSM “LSP”, such as a neutralino would be NLSP.

- NLSP decaying into gravitino
Could be long lived on collider time scale.

m
3/2 ⇠ FS

M
Pl

⌧ M
gaugino, squark...

is exactly one charged lepton, it can have either charge with exactly equal probability. This follows
from the fact that the gluino is a Majorana fermion, and does not “know” about electric charge; for
each diagram with a given lepton charge, there is always an equal one with every particle replaced by
its antiparticle.

9.5 Decays to the gravitino/goldstino

Most phenomenological studies of supersymmetry assume explicitly or implicitly that the lightest neu-
tralino is the LSP. This is typically the case in gravity-mediated models for the soft terms. However,
in gauge-mediated models (and in “no-scale” models), the LSP is instead the gravitino. As we saw in
section 7.5, a very light gravitino may be relevant for collider phenomenology, because it contains as its
longitudinal component the goldstino, which has a non-gravitational coupling to all sparticle-particle
pairs (X̃,X). The decay rate found in eq. (7.5.5) for X̃ → XG̃ is usually not fast enough to compete
with the other decays of sparticles X̃ as mentioned above, except in the case that X̃ is the next-to-
lightest supersymmetric particle (NLSP). Since the NLSP has no competing decays, it should always
decay into its superpartner and the LSP gravitino.

In principle, any of the MSSM superpartners could be the NLSP in models with a light goldstino,
but most models with gauge mediation of supersymmetry breaking have either a neutralino or a charged
lepton playing this role. The argument for this can be seen immediately from eqs. (7.7.17) and (7.7.18);
since α1 < α2,α3, those superpartners with only U(1)Y interactions will tend to get the smallest masses.
The gauge-eigenstate sparticles with this property are the bino and the right-handed sleptons ẽR, µ̃R,
τ̃R, so the appropriate corresponding mass eigenstates should be plausible candidates for the NLSP.

First suppose that Ñ1 is the NLSP in light goldstino models. Since Ñ1 contains an admixture of
the photino (the linear combination of bino and neutral wino whose superpartner is the photon), from
eq. (7.5.5) it decays into photon + goldstino/gravitino with a partial width

Γ(Ñ1 → γG̃) = 2× 10−3 κ1γ

( m
Ñ1

100 GeV

)5
( √

〈F 〉
100 TeV

)−4

eV. (9.5.1)

Here κ1γ ≡ |N11 cos θW +N12 sin θW |2 is the “photino content” of Ñ1, in terms of the neutralino mixing
matrix Nij defined by eq. (8.2.5). We have normalized m

Ñ1
and

√
〈F 〉 to (very roughly) minimum

expected values in gauge-mediated models. This width is much smaller than for a typical flavor-
unsuppressed weak interaction decay, but it is still large enough to allow Ñ1 to decay before it has left
a collider detector, if

√
〈F 〉 is less than a few thousand TeV in gauge-mediated models, or equivalently

if m3/2 is less than a keV or so when eq. (7.5.4) holds. In fact, from eq. (9.5.1), the mean decay length

of an Ñ1 with energy E in the lab frame is

d = 9.9 × 10−3 1

κ1γ
(E2/m2

Ñ1
− 1)1/2

( m
Ñ1

100 GeV

)−5
( √

〈F 〉
100 TeV

)4

cm, (9.5.2)

which could be anything from sub-micron to multi-kilometer, depending on the scale of supersymmetry
breaking

√
〈F 〉. (In other models that have a gravitino LSP, including certain “no-scale” models [229],

the same formulas apply with 〈F 〉 →
√
3m3/2MP.)

Of course, Ñ1 is not a pure photino, but contains also admixtures of the superpartner of the Z boson
and the neutral Higgs scalars. So, one can also have [146] Ñ1 → ZG̃, h0G̃, A0G̃, or H0G̃, with decay
widths given in ref. [147]. Of these decays, the last two are unlikely to be kinematically allowed, and
only the Ñ1 → γG̃ mode is guaranteed to be kinematically allowed for a gravitino LSP. Furthermore,
even if they are open, the decays Ñ1 → ZG̃ and Ñ1 → h0G̃ are subject to strong kinematic suppressions
proportional to (1 − m2

Z/m
2
Ñ1

)4 and (1 −m2
h0/m2

Ñ1

)4, respectively, in view of eq. (7.5.5). Still, these
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Comments

- Typically assumed bino NLSP, with decay 
bino⇒photon+gravitino. But, this is not necessary. 

Any superpartner could be NLSP. 

- No flavor problem!

- Can be low scale, decoupled from unknown high 
scale physics (string compactification, etc.).

General gauge mediation: Meade, Seiberg, Shih
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Comments

- Have to assume a more special structure. 
Messenger sector feels SUSY breaking, also have 
SM gauge couplings. 

Gauge coupling unification now needs to be 
arranged. 

- Light Gravitino can not account for dark matter. 
Other cosmological problems: light moduli... 

- μ, Bμ problem. 

- Having trouble with giving 125 GeV Higgs mass
Need additional structure. 
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Trying to be smart

- Many mediation mechanisms: 
Anormaly mediation. 

Gaugino mediation. 

Mirage, R-symmetric, μ-driven, U(1)’, ....

- Many challenge: flavor (CP) problem, naturalness, 
experimental constraints.

- None of them is perfect. Some are getting quite 
complicated. 

- Do we need to be smart? Are we lucky? 
Experiment will tell.
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LHC is setting stronger constraints

- Too strong already? No. After all, we can 
certainly have superpartners at TeV scale, and 
the theory is reasonably natural.

Summary
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Naturalness in trouble? 

- Stop limit is not too strong yet. 
Needs to be less than TeV for the theory to be 
natural (or slightly tuned).

Martin White                                                             11                                    University of Melbourne

All exclusion limits on one plot

γW,Z, higgstop

Figure 1: The most significant quadratically divergent contributions to the
Higgs mass in the Standard Model.

give

top loop − 3
8π2 λ2

t Λ
2 ∼ −(2 TeV)2

SU(2) gauge boson loops 9
64π2 g2Λ2 ∼ (700 GeV)2

Higgs loop 1
16π2 λ2Λ2 ∼ (500 GeV)2.

The total Higgs mass-squared includes the sum of these loop contributions and
a tree-level mass-squared parameter.

To obtain a weak-scale expectation value for the Higgs without worse than
10% fine tuning, the top, gauge, and Higgs loops must be cut off at scales
satisfying

Λtop
<
∼ 2 TeV Λgauge

<
∼ 5 TeV ΛHiggs

<
∼ 10 TeV. (1)

We see that the Standard Model with a cut-off near the maximum attainable
energy at the Tevatron (∼ 1 TeV) is natural, and we should not be surprised
that we have not observed any new physics. However, the Standard Model with
a cut-off of order the LHC energy would be fine tuned, and so we should expect
to see new physics at the LHC.

More specifically, we expect new physics that cuts off the divergent top
loop at or below 2 TeV. In a weakly coupled theory this implies that there are
new particles with masses at or below 2 TeV. These particles must couple to the
Higgs, giving rise to a new loop diagram that cancels the quadratically divergent
contribution from the top loop. For this cancellation to be natural, the new
particles must be related to the top quark by some symmetry, implying that the
new particles have similar quantum numbers to top quarks. Thus naturalness
arguments predict a new multiplet of colored particles with mass below 2 TeV,
particles that would be easily produced at the LHC. In supersymmetry these
new particles are of course the top squarks.

Similarly, the contributions from SU(2) gauge loops must be canceled by
new particles related to the Standard Model SU(2) gauge bosons by symmetry,
and the masses of these particles must be at or below 5 TeV for the cancellation
to be natural. Finally, the Higgs loop requires new particles related to the Higgs
itself at or below 10 TeV. Given the LHC’s 14 TeV center-of-mass energy, these
predictions are very exciting, and encourage us to explore different possibilities
for what the new particles could be.

4

Why new physics?

- Naturalness. 

Higgs mass is the one to protect. 

NP must couple to Higgs: 
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What do we expect after all. 

- SUSY flavor problem (last century). 

- Scalars probably would be heavy, 10s - 100s TeV. 

- Yes, we can be smart. But does nature care?

- Not surprising we have not seen the scalar 
superpartners.

g̃ g̃

d̃R s̃R

s̃∗R d̃∗R

d s

s̄ d̄

(a)

g̃ g̃

d̃L s̃L

s̃∗R d̃∗R

d s

s̄ d̄

(b)

g̃ g̃

d̃L s̃R

s̃∗R d̃∗L

d s

s̄ d̄

(c)

Figure 6.7: Some of the diagrams that contribute to K0 ↔ K
0
mixing in models with strangeness-

violating soft supersymmetry breaking parameters (indicated by ×). These diagrams contribute to
constraints on the off-diagonal elements of (a) m2

d
, (b) the combination of m2

d
and m2

Q, and (c) ad.

There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0
mixing

gets contributions from the diagrams in Figure 6.7, among others, if LMSSM
soft contains terms that mix

down squarks and strange squarks. The gluino-squark-quark vertices in Figure 6.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 6.7a and others does not exceed, in absolute value, the
experimental value 3.5× 10−12 MeV, ref. [93] obtains:
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Here nearly degenerate squarks with mass mq̃ are assumed for simplicity, with m2
s̃∗Rd̃R

= (m2
d
)21 treated

as a perturbation. The same limit applies when m2
s̃∗Rd̃R

is replaced by m2
s̃∗Ld̃L

= (m2
Q)21, in a basis

corresponding to the down-type quark mass eigenstates. An even more striking limit applies to the
combination of both types of flavor mixing when they are comparable in size, from diagrams including
fig. 6.7b. The numerical constraint is [93]:
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(6.4.3)

An off-diagonal contribution from ad would cause flavor mixing between left-handed and right-handed
squarks, just as discussed above for sleptons, resulting in a strong constraint from diagrams like fig. 6.7c.
More generally, limits on ∆mK and ε and ε′/ε appearing in the neutral kaon effective Hamiltonian
severely restrict the amounts of d̃L,R, s̃L,R squark mixings (separately and in various combinations),
and associated CP-violating complex phases, that one can tolerate in the soft squared masses.

Weaker, but still interesting, constraints come from the D0,D
0
system, which limits the amounts

of ũ, c̃ mixings from m2
u, m

2
Q and au. The B0

d , B
0
d and B0

s , B
0
s systems similarly limit the amounts of

d̃, b̃ and s̃, b̃ squark mixings from soft supersymmetry-breaking sources. More constraints follow from
rare ∆F = 1 meson decays, notably those involving the parton-level processes b → sγ and b → s#+#−

and c → u#+#− and s → de+e− and s → dνν̄, all of which can be mediated by flavor mixing in
soft supersymmetry breaking. There are also strict constraints on CP-violating phases in the gaugino
masses and (scalar)3 soft couplings following from limits on the electric dipole moments of the neutron
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0
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Heavy scalars

- More fine tuned. Yes. 102-4 more tuned than TeV 
partners. 

Still solves most of the naturalness problem 
(1032 ). 

- On the other hand
Simplest solution to the flavor (CP) problems.

Higgs mass.  
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SUSY.
- Minimal Supersymmetric Standard Model (MSSM)

 

In MSSM, at leading order λ is fixed by SM 
electroweak gauge couplings

Need MSUSY ≫ Mtop since mh(125 GeV) > mZ(90 GeV) 
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Mh=125 GeV in MSSM

Is heavy scalar reasonable? Maybe.

Giudice, Strumia, 2011

Many recent models:  Acharya, et al. 07; Everett, et. al. 08;
Langacker et. al. 07; Heckman et al. 08; Sundrum 09; Barbieri et. al., 10..... 

MSUSY (GeV)
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So, what’s left for the LHC?
- Perhaps the gauginos are light. 

It is quite generic to expect fermions are lighter 
than the scalars. There is additional protection for 
the fermion masses (that’s why it is natural). 

Many recent models:
Langacker, Paz, LTW, Yavin, 0710.1632

Verlinde, LTW, Wijnholt, Yavin, 0711.3214

Acharya, Bobkov, Kane, Kumar, 0801.0478 

Nakamura, Okumura, Yamaguchi, 0803.3725

Everett, Kim, Ouyang, Zurek, 0806.2330

Hackman, Vafa, 0809.3452

Sundrum, 0909.5430

Barbieri, Bertuzzo, Farina, Lodone, Rappadopulo, 
1004.2256 .........
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A promising scenario.

t̃, b̃
ũ, d̃, ...

g̃

Ñ

Heavy squarks 

Light gaugino

10s - 100s TeV

100s GeV - TeV

C̃±
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3rd vs first two generations

- RGE.

same as 1, 2 gen.
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [186]-[195],[177].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
superpartner. The squarks are all much heavier than the sleptons, and the lightest sfermion is a stau.
Variations in the model parameters have important and predictable effects. For example, taking larger
m2

0 in minimal supergravity models will tend to squeeze together the spectrum of squarks and sleptons
and move them all higher compared to the neutralinos, charginos and gluino. Taking larger values of
tan β with other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses compared to
those of the other sparticles.

The second sample sketch in fig. 7.5 is obtained from a typical minimal GMSB model, with boundary

79

3rd gen.

1st, 2nd gen.

t̃, b̃
ũ, d̃, ...

g̃

Ñ

S. Martin

t = log(Q)
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A promising, and complicated, scenario.

• Multiple b, multiple lepton final state. 

• Good early discovery potential. 

• Challenging to interpret: top reconstruction difficult.

t̃, b̃
ũ, d̃, ...

g̃

Ñ

The Dominant channel

g̃

t, b

t̄, b̄

Ñ

t̃∗, b̃∗

Kane, Kuflik, Lu and LTW, 1101.1963

C̃±
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Search is on: 

Altan CAKIR |  Searches for SUSY in events with 3rd generation particles at CMS 
  

 ICHEP 2012, Melbourne, Australia  |   Page 13 cakir@cern.ch �

Interpretation of the results �

PAS-SUS-12-017 �

� Gluinos have been excluded with masses up to approximately 880 GeV �
� Lower limit on the bottom squark mass of 408 GeV. �

Simplified Model �

gluino !virtual top squarks � gluino ! on-shell top squarks �

! For multiple bottom final states ! see Pablo Arbol`s talk! �
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Gluino mediated stop/sbottom production: Results and Interpretation

● No evidence for BSM physics!

● 95% confidence limits are set using the CL
s
 

prescription
 
 

 
ATLAS-CONF-2012-058
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Alternative SUSY

- Kill the missing energy
Controlled R-parity violation. 

Stealth SUSY. (squeezing the spectrum). 

- Alter some standard SUSY channels
R-symmetric ⇒ no same sign dilepton,        

different jet + MET 

J. Fan, M. Reece, J. Ruderman

Kribs, Martin, ...
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Large extra-dimension
Arkani-Hamed, Dimopoulos, Dvali.

See a good recent review in TASI lecture by Hsin-Chia Cheng
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Another approach to naturalness

- Remember that the problem is the disparity 
between the fundamental scale, MPl (quantum 
gravity), and the scale of weak interaction, mW.

- What if there is no difference big between the 
quantum gravity scale and the weak scale to 
begin with? 

large MPl, or gravity being very weak, needs to be 
an illusion. 

- How is the possible? 
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Gravity with extra-dimension

Figure 1: Force lines from a point mass in compact extra dimensions

Large extra dimensions as a solution to the hierarchy problem: In Standard Model

the electroweak symmetry is broken by the vacuum expectation value (VEV) of a scalar

Higgs field. However, the electroweak scale is unstable under radiative corrections as the

mass-squared of a scalar field receives quadratic contributions from its interactions. The

natural scale to cut off the quadratic contributions is the Planck scale when the quantum

gravity effects become important. Then, the question is why electroweak scale (∼ 100− 1000

GeV) is so much smaller than the 4D Planck scale (∼ 1019 GeV). One can turn this question

around and ask: why is gravity so weak compared with other interactions in the Standard

Model. One possibility is that the 4D Planck scale may not be a fundamental scale and the

scale of quantum gravity is actually much lower if there exist large extra dimensions [8, 13, 14].

Let us consider Newton’s law in 4 + n dimensions:

F (r) ∼
G(4+n)

N m1m2

rn+2
=

1

Mn+2
pl(4+n)

m1m2

rn+2
. (1.1)

If n extra dimensions are compact with size L = 2πR, then the force lines from a source mass

have to go parallel in extra dimensions when the distance in the usual 3 spatial dimensions is

larger than L (Fig. 1),

F (r) ∼
1

Mn+2
pl(4+n)

m1m2

rn+2
, for r # L, (1.2)

F (r) ∼
1

Mn+2
pl(4+n)

m1m2

Lnr2
, for r $ L. (1.3)

Comparing the last expression with the 4D Newton’s law,

F (r) ∼
1

Mn+2
pl(4)

m1m2

r2
, (1.4)

we have

M2
pl(4) ∼ Mn+2

pl(4+n)L
n = Mn+2

pl(4+n)Vn, (1.5)

3

L
Extra-dim, 

Curled up, with size L
Assume n extra dim

large dim we see everyday
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the electroweak symmetry is broken by the vacuum expectation value (VEV) of a scalar

Higgs field. However, the electroweak scale is unstable under radiative corrections as the
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natural scale to cut off the quadratic contributions is the Planck scale when the quantum
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Figure 2: The brane world

where Vn is the volume of the compact extra dimensions. If we take the fundamental scale

Mpl(4+n) ∼ 1 TeV and the 4D Planck scale Mpl(4) ∼ 1019 GeV, then we have (assuming extra

dimensions have the same size)

L ∼

(

M2
pl(4)

Mn+2
pl(4+n)

)1/n

∼ 1032/n TeV−1 ∼ 1032/n10−17 cm, (1.6)

n = 1 ⇒ L ∼ 1015 cm (> 1 AU), obviously ruled out,

n = 2 ⇒ L ∼ 1 mm , allowed in 1998, but current bound L < 200µm

n = 3 ⇒ L ∼ 10−6 cm .

On the other hand, SM has been well-tested up to a few hundred GeV to TeV, so SM

field cannot propagate in extra dimensions with size R ! 1 TeV−1. If there are large extra

dimensions, SM fields have to be localized on a 3-brane as shown in Fig. 2 (with thickness

" 1 TeV−1). It was surprising that such a scenario is alive and not ruled out experimentally

or observationally. In Sec. 4 we discuss various constraints from high-energy and low-energy

experiments as well as from astrophysics and cosmology. In the next 2 sections we will first

develop the formalism for studying theories with extra dimensions.
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n = 3 ⇒ L ∼ 10−6 cm .

On the other hand, SM has been well-tested up to a few hundred GeV to TeV, so SM

field cannot propagate in extra dimensions with size R ! 1 TeV−1. If there are large extra

dimensions, SM fields have to be localized on a 3-brane as shown in Fig. 2 (with thickness

" 1 TeV−1). It was surprising that such a scenario is alive and not ruled out experimentally

or observationally. In Sec. 4 we discuss various constraints from high-energy and low-energy

experiments as well as from astrophysics and cosmology. In the next 2 sections we will first

develop the formalism for studying theories with extra dimensions.
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Precision test of gravity

Figure 4: Laboratory bounds on deviations of the gravitational inverse-square law, taken from

D. J. Kapner et al [18].

gravitational force are usually parametrized by the modified potential,

V (r) = −GN
m1m2

r

(

1 + αe−r/λ
)

, (4.44)

where λ is the distance where the modification occurs and is given by the inverse mass of

the new light particle which mediates the new force, and α represents the strength of the

new force relative to the gravitational force. For the large extra dimension scenario, λ is

the inverse mass of the first KK graviton, λ = (m(1))−1 = R. and α is the number of the

first KK modes (e.g., α = 4 for 2 extra dimensions on a torus). The bounds from various

experiments are shown in Fig. 4. For 2 extra dimensions of the same size, the current bound

is R < 37µm [18]. Using the relation between the reduced Planck scales in 4 dimensions and

in 6 dimensions,

M
2
4 = (2πR)2M

4
6, (4.45)
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Collider signals.

- Production of excitation of the graviton in the 
extra-dimension, KK-modes ⇒ missing energy

mKK-graviton ≈ L－1 (like freq of vibration modes in a 
box of size L).

KK-graviton coupling Mpl(4+n)-1 ≈ TeV-1

Monojet, monophoton, Z, plus missing energy

f f

f
-

f
-

f
-

fGKK GKK GKK

γ, Z, g γ, Z, g γ, Z, g

Figure 8: Feynman diagrams for the KK graviton production.

We see that the result is proportional to the square of the higher dimensional gravi-

ton coupling M
−n+2

2

4+n as expected. One can obtain the same estimate from a higher

dimensional picture. The current experimental bound on the rare K decay is

B(K → π +X) < 10−10, τ(K) ∼ 10−8s ⇒ Γ(K → π +X) < 10−26 GeV. (4.56)

For n = 2, we have M 6 ! 1 TeV and the constraints are quite weak for n > 2.

2. Production of KK gravitons at high energy colliders: KK gravitons couple to the stress-

energy tensor Tµν , so they can be attached anywhere in a process. The leading processes

for KK graviton production in high energy collisions are

e+e− → γ/Z +GKK

qq̄ → g +GKK

qg → q +GKK (4.57)

The Feynman diagrams for these processes are shown in Fig. 8, and the Feynman rules

can be found in Ref. [15, 16]. The experimental signals are missing energy/momentum

from the unobserved graviton [15, 16, 23]. The current bounds can be found in Ref. [24]

which is reproduced here.

Experiment and channel n = 2 n = 3 n = 4 n = 5 n = 6

LEP Combined 1.60 1.20 0.94 0.77 0.66

CDF monophotons, 2.0 fb−1 1.08 1.00 0.97 0.93 0.90

DØ monophotons, 2.7 fb−1 0.97 0.90 0.87 0.85 0.83

CDF monojets, 1.1 fb−1 1.31 1.08 0.98 0.91 0.88

CDF combined 1.42 1.16 1.06 0.99 0.95
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Collider limits

A. Bonato (CERN) Search for extra-dimensions at CMS 14

ADD search in mono-jet analysis

● CMS-PAS-EXO-11-059 (sub. to JHEP): analysis constrains dark matter searches

– extensively described in S. Malik's talk

● MET > 350 GeV, p
T
 of leading-p

T
 jet >110 GeV ; control regions in data for V+jets

● Stringent limits in ADD model: fundamental Planck scale above 2.5 – 4 TeV 

Figure 5

= n
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More ambitious

- What can we expect if reach quantum gravity 
scale?

Make microscopic blackholes!

Microscopic blackholes will immediately evaporate 
(Hawking radiation).

“lighting up the LHC like a Christmas tree” (not 
yet). 
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Blackhole production

- Size of 4+n dimensional blackhole

- Strongly coupled, geometrical cross section, 
sizable. 

4.2.3 Black hole productions at colliders and in cosmic rays

For Mpl,4+n ∼ TeV and ECM > Mpl,4+n, black holes can be produced at high energy colli-

sions [25, 26]. Semiclassical arguments work for MBH " Mpl,4+n.

The Schwarzschild radius for a 4 + n-dimensional black hole is

Rs ∼
1

Mpl,4+n

(

MBH

Mpl,4+n

)
1

n+1

. (4.58)

For 2 partons with
√
s > Mpl,4+n moving in opposite directions, a black hole forms with mass

MBH ∼
√
s if the impact parameter is smaller than Rs. The cross section is given by the

geometrical formula,

σ(MBH) ≈ πR2
s ∼

1

M2
pl,4+n

(

MBH

Mpl,4+n

)
2

n+2

, (4.59)

which is large for
√
s " Mpl,4+n.

The produced black holes will decay through Hawking radiation with the Hawking tem-

perature

TH ∼ Mpl,4+n

(

Mpl,4+n

MBH

)
1

n+1

∼
1

Rs
. (4.60)

A black hole decays equally to a particle on the brane or in the bulk, so it decays mostly to

the brane if there are more brane (SM) fields than the bulk fields (graviton). The multiplicity

of particles produced in a black hole evaporation can be estimated as

〈N〉 =
〈

MBH

Eparticle

〉

∼
〈

MBH

TH

〉

∼
(

MBH

Mpl,4+n

)
n+2
n+1

. (4.61)

The branching fraction to leptons is about 10% and to photons is about 2%. The search

strategy is to select events with high multiplicities and e± or γ with E > 100 GeV. The reach

at the LHC extends up toMpl,4+n ∼ 9 TeV [24]. High energy cosmic rays also provide powerful

probes of black hole productions in the large extra dimension scenario [27, 28, 29, 30].

4.3 Astrophysics bounds

Astrophysics provides some of the strongest constraints on the large extra dimension scenario

(for small n).

1. Star cooling: Constraints on the fundamental Planck scale can be obtained from bounds

on energy loss due to KK graviton emission from the Sun, red giants, and supernovae.
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Blackhole limits

A. Bonato (CERN) Search for extra-dimensions at CMS 12

Use the same results for setting limits on ADD assuming specific BH models:
● for n

D
 = 2, M

BH
 > ~ 4.8 – 5.8 TeV

● for n
D
 = 6, M

BH
 > ~ 5.3 – 6.1 TeV

● large improvement (~10-20%) with respect to 2011 analysis (~25% less lumi !) 

Model-dependent interpretation
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Comments on large extra dimension
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- Quantum gravity at TeV! Is this crazy? Yes. 

Thursday, August 9, 12



Comments on large extra dimension

- Quantum gravity at TeV! Is this crazy? Yes. 

- One can argue the naturalness question is now in 
why the extra dimension is large. 

Thursday, August 9, 12



Comments on large extra dimension

- Quantum gravity at TeV! Is this crazy? Yes. 

- One can argue the naturalness question is now in 
why the extra dimension is large. 

- All true. However,
This is new scenario in which the the naturalness 
problem could be solved. 

Nothing cancels the divergences. Quantum gravity 
takes care of everything. 
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Comments on large extra dimension

- Quantum gravity at TeV! Is this crazy? Yes. 

- One can argue the naturalness question is now in 
why the extra dimension is large. 

- All true. However,
This is new scenario in which the the naturalness 
problem could be solved. 

Nothing cancels the divergences. Quantum gravity 
takes care of everything. 

- Unlikely? Yes. But very exciting if it is true.
Like winning lottery. 
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