An Introduction to
Hadron Colliders
Lecture 2

Mike Syphers
Michigan State University

Outline

- Day One:
- luminosity
- a little history -- the modern synchrotron
- magnets and cavities
- longitudinal dynamics
- transverse dynamics
- Day Two:
- Courant-Snyder variables (the 'beta’ function)
- transverse emittance
- momentum dispersion and chromaticity
- linear errors and adjustments
- Day Three:
- beam-beam interactions
- hour glass and crossing angles
- diffusion and emittance growth
- luminosity optimization
- future directions

Particle Trajectories

1 FODO "cell"

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

$$
x^{\prime \prime}+K(s) x=0
$$

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Particle Trajectories

1 FODO "cell"

S

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Particle Trajectories

1 FODO "cell"

S

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Particle Trajectories

1 FODO "cell"

S

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Particle Trajectories

1 FODO "cell"

s

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Particle Trajectories

1 FODO "cell"

s

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Particle Trajectories

- Let's develop an analytical description:

$$
\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x
$$

(Hill's Equation)

- Look for oscillatory solution with modified amplitude ...

$$
\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]
$$

Analytical Solution

- our assumption:
- take 1st, 2nd derivatives..

$$
\begin{aligned}
x(s) & =A \sqrt{\beta(s)} \sin [\psi(s)+\delta] \\
x^{\prime} & =\frac{1}{2} A \beta^{-\frac{1}{2}} \beta^{\prime} \sin [\psi(s)+\delta]+A \sqrt{\beta} \cos [\psi(s)+\delta] \psi^{\prime} \\
x^{\prime \prime} & =\cdots
\end{aligned}
$$

Plug into Hill's Equation, and collect terms...

$$
\begin{aligned}
x^{\prime \prime}+K(s) x= & A \sqrt{\beta}\left[\psi^{\prime \prime}+\frac{\beta^{\prime}}{\beta} \psi^{\prime}\right] \cos [\psi(s)+\delta] \\
& +A \sqrt{\beta}\left[-\frac{1}{4} \frac{\left(\beta^{\prime}\right)^{2}}{\beta^{2}}+\frac{1}{2} \frac{\beta^{\prime \prime}}{\beta}-\left(\psi^{\prime}\right)^{2}+K\right] \sin [\psi(s)+\delta]=0
\end{aligned}
$$

A and δ are constants of integration, defined by the initial conditions (x_{0}, x_{0}^{\prime}) of the particle. For arbitrary A, δ, must have contents of each [] = 0 simultaneously.

Analytical Solution (cont'd)

- Thus, we must have ...

$$
\begin{aligned}
& \begin{array}{rr}
\psi^{\prime \prime}+\frac{\beta^{\prime}}{\beta} \psi^{\prime}=0 & \text { and } \\
\begin{array}{rr}
\beta \psi^{\prime \prime}+\beta^{\prime} \psi^{\prime}=0 & -\frac{1}{4} \frac{\left(\beta^{\prime}\right)^{2}}{\beta^{2}}+\frac{1}{2} \frac{\beta^{\prime \prime}}{\beta}-\left(\psi^{\prime}\right)^{2}+K=0 \\
\left(\beta \psi^{\prime}\right)^{\prime}=0 & 2 \beta \beta^{\prime \prime}-\left(\beta^{\prime}\right)^{2}-4 \beta^{2}\left(\psi^{\prime}\right)^{2}+4 K \beta^{2}=0 \\
\beta \psi^{\prime}=\text { const } & 2 \beta \beta^{\prime \prime}-\left(\beta^{\prime}\right)^{2}+4 K \beta^{2}=4
\end{array} \\
\psi^{\prime}=1 / \beta
\end{array} \\
& \begin{array}{l}
\text { Note: the phase advance is an } \\
\text { observable quantity. So, while could } \\
\text { choose different value of const, then } \\
\text { would just scale } \beta \text { accordingly; thus, } \\
\text { valid to choose const=1. }
\end{array}
\end{aligned}
$$

Some Comments

- We chose the amplitude function to be a positive definite function in its definition, since we want to describe real solutions.
- The square root of the amplitude function determines the shape of the envelope of a particle's motion. But the amplitude function also is a local wavelength of the motion.
- This seems strange at first, but ...
- Imagine a particle oscillating within our focusing lens system; if the lenses are suddenly spaced further apart, the particle's motion will grow larger between lenses, and additionally it will travel further before a complete oscillation takes place. If the lenses are spaced closer together, the oscillation will not be allowed to grow as large, and more oscillations will occur per unit distance travelled.
- Thus, the spacing and/or strengths (i.e., $K(s)$) determine both the rate of change of the oscillation phase as well as the maximum oscillation amplitude. These attributes must be tied together.

The Amplitude Function, β

Higher β--
smaller phase advance rate larger beam size

Lower β--

greater phase advance rate smaller beam size

- Since the amplitude function is a wavelength, it will have numerical values of many meters, say. However, typical particle transverse motion is on the scale of mm . So, this means that the constant A must have units of $\mathrm{m}^{1 / 2}$, and it must be numerically small. More on this subject coming up...

Equation of Motion of Amplitude Function

From

$$
2 \beta \beta^{\prime \prime}-\left(\beta^{\prime}\right)^{2}+4 K \beta^{2}=4
$$

we get

$$
\begin{gathered}
2 \beta^{\prime} \beta^{\prime \prime}+2 \beta \beta^{\prime \prime \prime}-2 \beta^{\prime} \beta^{\prime \prime}+4 K^{\prime} \beta^{2}+8 K \beta \beta^{\prime}=0 \\
\beta^{\prime \prime \prime}+4 K \beta^{\prime}+2 K^{\prime} \beta=0 .
\end{gathered}
$$

Typically, $K^{\prime}(s)=0$, and so

$$
\left(\beta^{\prime \prime}+4 K \beta\right)^{\prime}=0
$$

or

$$
\beta^{\prime \prime}+4 K \beta=\text { const }
$$

is the general equation of motion for the amplitude function, β.
(in regions where K is either zero or constant)

Piecewise Solutions

- $K=0$:

$$
\beta^{\prime \prime}=\mathrm{const} \longrightarrow \beta(s)=\beta_{0}+\beta_{0}^{\prime} s+\frac{1}{2} \beta_{0}^{\prime \prime} s^{2} \quad \text { parab }^{\circ 1 a!}
$$

- since $\beta>0$, then from original diff. eq.: $2 \beta \beta^{\prime \prime}-\left(\beta^{\prime}\right)^{2}=4$ the parabola is always concave up $\quad \beta^{\prime \prime}>0$
- $K>0, K<0$:
$\beta(s) \sim \sin / \cos$ or $\sinh / \cosh +$ const

Courant-Snyder Parameters, \& Connection to Matrix Approach

- Suppose, for the moment, that we know the value of the amplitude function and its slope at two points along our particle transport system.
- Have seen how to write the motion of a single particle in one degree of freedom between two points in terms of a matrix. We can now recast the elements of this matrix in terms of the local values of the amplitude function.
- Define two new variables,

$$
\alpha \equiv-\frac{1}{2} \beta^{\prime}, \quad \gamma \equiv \frac{1+\alpha^{2}}{\beta}
$$

- Collectively, $\beta, \alpha, \alpha_{\text {are called the Courant-Snyder Parameters }}$ (sometimes called "Twiss parameters" or "lattice parameters")

$$
2 \beta \beta^{\prime \prime}-\left(\beta^{\prime}\right)^{2}+4 K \beta^{2}=4 \quad==\quad K \beta=\gamma+\alpha^{\prime}
$$

The Transport Matrix

- We can write:

$$
x(s)=a \sqrt{\beta} \sin \Delta \psi+b \sqrt{\beta} \cos \Delta \psi
$$

- Solve for a and b in terms of initial conditions and write in matrix form
- we get:

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{cc}
\left(\frac{\beta}{\beta_{0}}\right)^{1 / 2}\left(\cos \Delta \psi+\alpha_{0} \sin \Delta \psi\right) & \sqrt{\beta_{0} \beta} \sin \Delta \psi \\
-\frac{1+\alpha_{0} \alpha}{\sqrt{\beta_{0} \beta}} \sin \Delta \psi-\frac{\alpha-\alpha_{0}}{\sqrt{\beta_{0} \beta}} \cos \Delta \psi & \left(\frac{\beta_{0}}{\beta}\right)^{1 / 2}(\cos \Delta \psi-\alpha \sin \Delta \psi)
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}
$$

$\Delta \psi$ is the phase advance from point s_{0} to point s in the beam line

Periodic Solutions

- Within a system made up of periodic sections it is natural to want the beam envelope to have the same periodicity.
- Taking the previous matrix to be that of a periodic section, and demanding the C-S parameters be periodic yields...

$$
M_{\text {periodic }}=\left(\begin{array}{cc}
\cos \Delta \psi+\alpha \sin \Delta \psi & \beta \sin \Delta \psi \\
-\gamma \sin \Delta \psi & \cos \Delta \psi-\alpha \sin \Delta \psi
\end{array}\right)
$$

Natural choice in a circular accelerator, when values of β, α above correspond to one particular point in the ring

Propagation of Courant-Snyder Parameters

- We can write the matrix of a periodic section as:

$$
\begin{aligned}
M_{0} & =\left(\begin{array}{cc}
\cos \Delta \psi+\alpha \sin \Delta \psi & \beta \sin \Delta \psi \\
-\gamma \sin \Delta \psi & \cos \Delta \psi-\alpha \sin \Delta \psi
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos \Delta \psi+\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \sin \Delta \psi \\
& =I \cos \Delta \psi+J \sin \Delta \psi \quad=e^{J \Delta \psi}
\end{aligned}
$$

- where

$$
J=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \quad \operatorname{det} J=1, \quad \operatorname{trace}(J)=0 ; \quad J^{2}=-I
$$

α, β are values at the beginning/end of the periodic section described by matrix M

Tracking β, α, y...

- Let M_{1} and M_{2} be the "periodic" matrices as calculated at two points, and M propagates the motion between them. Then,

- Or, equivalently,
- if know C-S parameters (i.e., J) at one point, can find them at another point if given the matrix for motion in between:

$$
J=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \quad J_{2}=M J_{1} M^{-1}
$$

- Doesn't have to be part of a periodic section; valid between any two points of an arbitrary arrangement of elements

Evolution of the Phase Advance

- Again, if know parameters at one point, and the matrix from there to another point, then

$$
M_{1 \rightarrow 2}=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \Longrightarrow \frac{b}{a \beta_{1}-b \alpha_{1}}=\tan \Delta \psi_{1 \rightarrow 2}
$$

- So, from knowledge of matrices, can "transport" phase and the CourantSnyder parameters along a beam line from one point to another

Simple Examples

- Propagation through a Drift:

$$
M=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

- Propagation through a Thin Lens:

$$
\begin{aligned}
M= & \left(\begin{array}{cc}
1 & 0 \\
-1 / F & 1
\end{array}\right) \\
\Longrightarrow \quad & \Delta \psi=0 \\
& \beta=\beta_{0} \\
& \alpha=\alpha_{0}+\beta_{0} / F \\
& \gamma=\gamma_{0}+2 \alpha_{0} / F+\beta_{0} / F^{2}
\end{aligned}
$$

- Given α, β at one point, can calculate α, β at all downstream points

Choice of Initial Conditions

- Have seen how β can be propagated from one point to another. Still, have the choice of initial conditions...
- If periodic system, like a "ring," then natural to choose the periodic solution for β, α
- If beam line connects one ring to another ring, or a ring to a target, then we take the periodic solution of the upstream ring as the initial condition for the beam line
- In a system like a linac, wish to "match" to desired initial conditions at the input to the system (somewhere after the source, say) using an arrangement of focusing elements

Computation of Courant-Snyder Parameters

- As an example, consider again the FODO system

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
1 & 0 \\
-1 / F & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 / F & 1
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & L \\
-1 / F & 1-L / F
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
1 / F & 1+L / F
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+L / F & 2 L+L^{2} / F \\
-L / F^{2} & 1-L / F-L^{2} / F^{2}
\end{array}\right)
\end{aligned}
$$

- Thus, use above matrix of the periodic section to compute functions at the exit of the F quad..

FODO Cell

- From the matrix:
call $\mu=\Delta \psi$

$$
M=\left(\begin{array}{cc}
1+L / F & 2 L+L^{2} / F \\
-L / F^{2} & 1-L / F-L^{2} / F^{2}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Here, μ is
phase advance
through one periodic cell

$$
\begin{aligned}
& \text { trace } M=a+d=2-L^{2} / F^{2}=2 \cos \mu \quad \Rightarrow \sin \frac{\mu}{2}=\frac{L}{2 F} \\
& \beta=\frac{b}{\sin \mu}=2 F \sqrt{\frac{1+L / 2 F}{1-L / 2 F}} \quad \alpha=\frac{a-d}{2 \sin \mu}=\sqrt{\frac{1+L / 2 F}{1-L / 2 F}}
\end{aligned}
$$

- If go from D quad to D quad, simply replace F--> - F in matrix M - at exit:

$$
\beta=2 F \sqrt{\frac{1-L / 2 F}{1+L / 2 F}}
$$

$$
\alpha=-\sqrt{\frac{1-L / 2 F}{1+L / 2 F}}
$$

Low-Beta

- In drift, amplitude function is a parabola:

$$
\beta(s)=\beta^{*}\left[1+\left(s / \beta^{*}\right)^{2}\right]
$$

- Very small beam at IP requires very large beam in the final focus triplet:

teloscope-like:
"eyepiece"

Betatron Tune

- Since $x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta] \quad$ and $\quad \psi^{\prime}=1 / \beta$
then the total phase advance around the circumference is given by

$$
\psi_{t o t} \equiv 2 \pi \nu=\oint \frac{d s}{\beta}
$$

The tune, v, is the number of transverse "betatron oscillations" per revolution. The phase advance through one FODO cell is given by

$$
\psi_{\text {cell }}=2 \sin ^{-1}\left(\frac{L}{2 F}\right)
$$

Example: For the Tevatron, $L / 2 F=0.6$, and since there are about 100 cells, the total tune is about $100 \times(2 \times 0.6) / 2 \pi \sim 20$

- Note: since betatron tune ~ 20, and synchrotron tune ~ 0.002, it is (relatively) safe to consider these effects independently
- "circular" accels --> resonance conditions; choose tunes carefully!

FODO Cells (arcs)

max, min values of β :

$$
\beta_{\text {max }, \text { min }}=2 F \sqrt{\frac{1 \pm L / 2 F}{1 \mp L / 2 F}}
$$

entering, exiting a thin lens quad:

$$
\Delta \beta^{\prime}=\mp 2 \beta / F
$$

between the quadrupoles:

$$
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}
$$

Ex: Tevatron Cell

$$
\begin{aligned}
& \sin (\mu / 2)=L / 2 F=0.6 \longrightarrow \mu \approx 1.2\left(69^{\circ}\right) \\
& \beta_{\max }=2(25 \mathrm{~m}) \sqrt{1.6 / 0.4}=100 \mathrm{~m} \\
& \beta_{\min }=2(25 \mathrm{~m}) \sqrt{0.4 / 1.6}=25 \mathrm{~m} \\
& \nu \approx 100 \times 1.2 / 2 \pi \sim 20
\end{aligned}
$$

Computer Codes

- Complicated arrangements can be fed into now-standard computer codes for analysis

- TRANSPORT, MAD, DIMAD

- TRACE, TRACE3D, COSY
- SYNCH, CHEF, many more

Review

- Found analytical solution to Hill's Equation:

$$
x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]
$$

- So far, discussed amplitude function, β
- What about A ?
- Given $\beta(\mathrm{s})$, how big is the beam at a particular location? mm ? cm ? m ?
- If perturb the beam's trajectory, how much will it move downstream?
- Want to go from discussing single particle behavior to discussing a "beam" of particles

Betatron Oscillation Amplitude

- Transverse oscillations in a synchrotron (or beam line) are called Betatron Oscillations (first observed/analyzed in a betatron)
- Write x, x^{\prime} in terms of initial conditions x_{0}, x_{0}^{\prime} :

$$
\begin{aligned}
x(s) & =a \sqrt{\beta} \cos \Delta \psi+b \sqrt{\beta} \sin \Delta \psi \\
x^{\prime} & =\frac{1}{\sqrt{\beta}}([b-a \alpha] \cos \Delta \psi-[a+b \alpha] \sin \Delta \psi) \\
& \downarrow \\
a & =\frac{x_{0}}{\sqrt{\beta_{0}}}, \quad b=\frac{\alpha_{0} x_{0}+\beta_{0} x_{0}^{\prime}}{\sqrt{\beta_{0}}}
\end{aligned}
$$

$$
\Longrightarrow x(s)=\sqrt{\frac{\beta(s)}{\beta_{0}}}\left[x_{0} \cos \Delta \psi+\left(\alpha_{0} x_{0}+\beta_{0} x_{0}^{\prime}\right) \sin \Delta \psi\right]
$$

$$
\text { amplitude: } A=\sqrt{\frac{x_{0}^{2}+\left(\alpha_{0} x_{0}+\beta_{0} x_{0}^{\prime}\right)^{2}}{\beta_{0}}}
$$

Free Betatron Oscillation

- Suppose a particle traveling along the design path is given a sudden (impulse) deflection through angle

$$
\Delta x^{\prime}=x_{0}^{\prime}=\Delta \theta
$$

- Then, downstream, we have

$$
x(s)=\Delta \theta \sqrt{\beta_{0} \beta(s)} \sin \left[\psi(s)-\psi_{0}\right]
$$

Example:
Suppose $\Delta \theta=0.4 \mathrm{mrad}, \beta_{0}=4.0 \mathrm{~m}, \beta(\mathrm{~s})=6.4 \mathrm{~m}$, and $\Delta \psi=n \times 2 \pi+30^{\circ}$. Then $x(s)=1 \mathrm{~mm}$.

Courant-Snyder Invariant

- In general,

$$
\begin{aligned}
x & =A \sqrt{\beta} \sin \psi \\
x^{\prime} & =\frac{A}{\sqrt{\beta}}[\cos \psi-\alpha \sin \psi] \\
\beta x^{\prime} & =A \sqrt{\beta}[\cos \psi-\alpha \sin \psi] \\
& =A \sqrt{\beta} \cos \psi-\alpha x \\
\beta x^{\prime}+\alpha x & =A \sqrt{\beta} \cos \psi
\end{aligned}
$$

While C-S parameters evolve along the beam line, the combination above remains constant.

Properties of the Phase Space Ellipse

- The eqn. for the C-S invariant is that of an ellipse.
- If compute the area of the ellipse, find that
i.e., while the ellipse changes shape along the beam line, its area remains constant

Motion in Phase Space

- Follow phase space trajectory...

Phase Space area is preserved

Beam Emittance

- Phase space area which contains a certain fraction of the beam particles
- Popular Choices:
- 95\%
- 39\%
- 15\%

Adiabatic Damping from Acceleration

- Transverse oscillations imply transverse momentum. As accelerate, momentum is "delivered" in the longitudinal direction (along the sdirection). Thus, on average, the angular divergence of a particle will decrease, as will its oscillation amplitude, during acceleration.

- The coordinates $x-x$ ' are not canonical conjugates, but $x-p_{x}$ are; thus, the area of a trajectory in $x-p_{x}$ phase space is invariant for adiabatic changes to the system.

Normalized Beam Emittance

- Hence, as particles are accelerated, the area in $x-x^{\prime}$ phase space is not preserved, while area in $x-p_{x}$ is preserved. Thus, we define a "normalized" beam emittance, as

$$
\epsilon_{N} \equiv \epsilon \cdot(\beta \gamma)
$$

- In principle, the normalized beam emittance should be preserved during acceleration, and hence along the chain of accelerators from source to target. Thus it is a measure of beam quality, and its preservation a measure of accelerator performance.
- In practice, it is not preserved -- non-adiabatic acceleration, especially at the low energy regime; non-linear field perturbations; residual gas scattering; charge stripping; field errors and setting errors; etc. -- all contribute at some level to increase the beam emittance. Best attempts are made to keep this as small as possible.

Gaussian Emittance

- So, normalized emittance that contains a fraction f of a Gaussian beam is:

$$
\epsilon_{N}=-2 \pi \ln (1-f) \frac{\sigma_{x}^{2}(s)}{\beta(s)}(\beta \gamma) \Sigma_{\text {Lorentz! }}
$$

- Common values of f :

f	$\epsilon_{N} /(\beta \gamma)$
95%	$6 \pi \sigma^{2} / \beta$
86.5%	$4 \pi \sigma^{2} / \beta$
39%	$\pi \sigma^{2} / \beta$
15%	σ^{2} / β

Perhaps most commonly
used, sometimes called the
"rms" emittance; but, always
ask if not clear in context!

Emittance in Terms of Moments

- For each particle, $\quad x=A \sqrt{\beta} \sin \psi \quad x^{\prime}=\frac{A}{\sqrt{\beta}}(\cos \psi-\alpha \sin \psi)$
- Average over the distribution...

$$
\begin{gathered}
x^{2}=A^{2} \beta \sin ^{2} \psi \quad x^{\prime 2}=\frac{A^{2}}{\beta}\left(\cos ^{2} \psi+\alpha^{2} \sin ^{2} \psi-\alpha \sin 2 \psi\right) \\
\left\langle x^{2}\right\rangle=\frac{1}{2}\left\langle A^{2}\right\rangle \beta \quad\left\langle x^{\prime 2}\right\rangle=\frac{\left\langle A^{2}\right\rangle}{2 \beta}\left(1+\alpha^{2}\right)=\frac{1}{2}\left\langle A^{2}\right\rangle \gamma \\
\text { and } \ldots \quad x x^{\prime}=A^{2}\left(\frac{1}{2} \sin 2 \psi-\alpha \sin ^{2} \psi\right) \\
\quad\left\langle x x^{\prime}\right\rangle=-\frac{1}{2}\left\langle A^{2}\right\rangle \alpha
\end{gathered}
$$

From which the average of all particle emittances will be

$$
\pi\left\langle A^{2}\right\rangle=2 \pi \sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

and the "normalized rms emittance" can be defined as:

$$
\epsilon_{N}=\pi(\beta \gamma) \sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

TRANSPORT of Beam Moments

- For simplicity, define $\tilde{\epsilon} \equiv \frac{1}{2}\left\langle A^{2}\right\rangle$; then,
- Note that:

$$
\tilde{\epsilon} J=\left(\begin{array}{cc}
\tilde{\epsilon} \alpha & \tilde{\epsilon} \beta \\
-\tilde{\epsilon} \gamma & -\tilde{\epsilon} \alpha
\end{array}\right)=\left(\begin{array}{cc}
-\left\langle x x^{\prime}\right\rangle & \left\langle x^{2}\right\rangle \\
-\left\langle x^{\prime 2}\right\rangle & \left\langle x x^{\prime}\right\rangle
\end{array}\right)
$$

- Correlation Matrix:

$$
\Sigma \equiv\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x x^{\prime}\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)
$$

$$
\Sigma_{2}=M \Sigma_{1} M^{T}
$$

Here, M is from point 1 to point 2 along the beam line (same M as previously)

Summary

- So, can look at propagation of amplitude function through beam line given matrices of individual elements. Beam size at a particular location determined by

$$
x_{r m s}(s)=\sqrt{\beta(s) \epsilon_{N} / \pi(\beta \gamma)}
$$

- Or, given an initial particle distribution, can look at propagation of second moments (of position, angle) given the same element matrices, and hence the propagation of the beam size, $\sqrt{\left\langle x^{2}\right\rangle(s)}$.
- Either way, can separate out the inherent properties of the beam distribution from the optical properties of the hardware arrangement

Effects due to Momentum Distribution

- Beam will have a distribution in momentum space
- Trajectories of individual particles will spread out when pass through magnetic fields
- B is constant; thus $\Delta \theta / \theta \sim-\Delta p / p$
- path is also altered by the gradient fields...
- These trajectories are described by the Dispersion Function:

$$
D(s) \equiv \Delta x_{\text {c.o. }}(s) /(\Delta p / p)
$$

- Consequently, affects beam size:

$$
\left\langle x^{2}\right\rangle=\epsilon_{N} \beta(s) /(\pi \gamma v / c)+D(s)^{2}\left\langle(\Delta p / p)^{2}\right\rangle
$$

Dispersion Suppressor
(s)

So, dispersion of aprithe Foo latte wI bending can be cancelled where $x=\frac{1}{2(1-\cos \mu)} \quad[$ where $\mu=$ cell $(F-t-F)]$
common exis:

μ	x	$(1-x)$
60°	1	0
90°	$\frac{1}{2}$	$\frac{1}{2}$

Chromaticity

- Focusing effects from the magnets will also depend upon momentum:

$$
x^{\prime \prime}+K(s, p) x=0 \quad K=e\left(\partial B_{y}(s) / \partial x\right) / p
$$

- To give all particles the similar optics, regardless of momentum, need a "gradient" which depends upon momentum. Orbits spread out horizontally (or vertically) due to dispersion, can use a sextupole field:

$$
\vec{B}=\frac{1}{2} B^{\prime \prime}\left[2 x y \hat{x}+\left(x^{2}-y^{2}\right) \hat{y}\right]
$$

- which gives
$\partial B_{y} / \partial x=B^{\prime \prime} x=B^{\prime \prime} D(\Delta p / p)$
i.e., a field gradient which depends upon momentum
- Chromatic aberrations are the variation of optics with momentum; chromaticity is the variation of tune with momentum. We use sextupole magnets to control/adjust; but, now introduces nonlinear fields ...
- can create a transverse dynamic aperture!

Collider Accelerator Lattice

- can build up out of modules
- check for overall stability -- x/y

- meets all requirements of the program
- Energy --> circumference, fields, etc.
- spot size at interaction point: β minimized, $D=0$
- etc...

FODO Cells (arcs)

$$
\begin{array}{ll}
\Delta \beta^{\prime}=\mp 2 \beta / F & \text { through a thin quad } \\
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} & \text { between quadrupoles }
\end{array}
$$

$\beta_{\text {max }, \text { min }}=2 F \sqrt{\frac{1 \pm L / 2 F}{1 \mp L / 2 F}}$

Ex: Tevatron Cell

$$
\begin{aligned}
& \sin (\mu / 2)=L / 2 F=0.6 \longrightarrow \mu \approx 1.2\left(69^{\circ}\right) \\
& \beta_{\max }=2(25 \mathrm{~m}) \sqrt{1.6 / 0.4}=100 \mathrm{~m} \\
& \beta_{\text {min }}=2(25 \mathrm{~m}) \sqrt{0.4 / 1.6}=25 \mathrm{~m} \\
& \nu \approx 100 \times 1.2 / 2 \pi \sim 20
\end{aligned}
$$

Dispersion Suppression

phase advance $=90^{\circ}$ per cell

Dispersion Suppression

phase advance $=90^{\circ}$ per cell

Long Straight Section

- a "matched insertion" that propagates the amplitude functions from their FODO values, through the new region, and reproduces them on the other side
- Here, we see an LHC section used for beam scraping

Interaction Region

LHC high
luminosity
IR

Low-Beta "Squeeze"

- As beam is larger at injection than it is at collision energy, do not want a "low-beta" condition during injection process
- Thus, the triplet and other nearby quadrupoles are tuned to adjust beam size at the focus; the beam is "squeezed" near the end of the sequence

Tevatron
Example

Put it all Together

- make up a synchrotron out of FODO cells for bending, a few matched straight sections for special purposes...

Put it all Together

- make up a synchrotron out of FODO cells for bending, a few matched straight sections for special purposes...

Corrections and Adjustments

- Correction/adjustment systems required for fine control of accelerator:
- correct for misalignment, construction errors, drift, etc.
- adjust operational conditions, tune up
- Use smaller magnetic elements for "fine tuning" of accelerator
- dipole steering magnets for orbit/trajectory adjustment
- quadrupole correctors for tune adjustment
- sextupole magnets for chromaticity adjustment
- Typically, place correctors and instrumentation near the major quadrupole magnets -- "corrector package"
- control steering, tunes, chromaticity, etc.
- monitor beam position (in particular), intensity, losses, etc.

Linear Distortions

Orbit distortion due to single dipole field error

Envelope Error (Beta-beat) due to gradient error
gradient error also generates a shift in the betatron tunes...

$$
\Delta \nu=\frac{1}{4 \pi} \beta_{0} \Delta q
$$

Resonances and Tune Space

- Error fields are encountered repeatedly each revolution -- can be resonant with tune
- repeated encounter with a steering (dipole) error produces an orbit distortion:
» thus, avoid integer tunes

$$
\Delta x \sim \frac{1}{\sin \pi \nu}
$$

- repeated encounter with a focusing (quad) error produces distortion of amplitude fcn:
»thus, avoid half-integer tunes

$$
\Delta \beta / \beta \sim \frac{1}{\sin 2 \pi \nu}
$$

Nonlinear Resonances

- Phase space w/ sextupole field present $\left(B_{y} \sim x^{2}\right)$
- tune dependent:
- "dynamic aperture"
- Thus, avoid tune values:
- $\quad k, k / 2, k / 3, \ldots$

Tune Spread

- due to momentum -- chromaticity
- "natural" chromaticity due to particle rigidity
- also, field errors in magnets $\sim x^{2}$ in the presence of Dispersion
- due to nonlinear fields
- field terms $\sim x^{2}, x^{3}$, etc.
- --> "decoherence" of beam position signal

Tune Diagram

- Always "error fields" in the real accelerator
- Coupled motion also generates resonances (sum/difference resonances)
- in general, should avoid: $m \nu_{x} \pm n \nu_{y}=k$

avoid ALL rational tunes???

Tune Diagram

Through order $k=2$

Tune Diagram

Through order $k=3$

Tune Diagram

Tune Diagram

Tune Diagram

Tune Diagram

2

Break till Day Three...

- Tomorrow:
- beam-beam interaction
- energy deposition and synchrotron radiation
- diffusion and emittance growth
- hour glass and crossing angles
- luminosity optimization
- future directions

