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Outline
! Day One:

• luminosity
• a little history -- the modern synchrotron
• magnets and cavities
• longitudinal dynamics
• transverse dynamics

! Day Two:
• Courant-Snyder variables (the ‘beta’ function)
• transverse emittance
• momentum dispersion and chromaticity
• linear errors and adjustments

! Day Three:
• beam-beam interactions
• hour glass and crossing angles
• diffusion and emittance growth
• luminosity optimization
• future directions

43

Day Two:
• Courant-Snyder variables (the ‘beta’ function)
• transverse emittance
• momentum dispersion and chromaticity
• linear errors and adjustments
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Particle Trajectories

! Let’s develop an analytical description:

! Look for oscillatory solution with modified amplitude ...
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(Hill’s Equation)
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Analytical Solution

x(s) = A
√

β(s) sin[ψ(s) + δ]

x′ =
1

2
Aβ−

1

2 β′ sin[ψ(s) + δ] + A
√

β cos[ψ(s) + δ]ψ′

x′′ = . . .

Plug into Hill’s Equation, and collect terms... 

    and    are constants of integration, defined by the initial
conditions              of the particle.  For arbitrary        , must 
have contents of each [   ] = 0 simultaneously.

A δ
A, δ(x0, x

′

0)

x′′ + K(s)x = A
√

β

[

ψ′′ +
β′

β
ψ′

]

cos[ψ(s) + δ]

+A
√

β

[

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K

]

sin[ψ(s) + δ] = 0
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!   our assumption:

•  take 1st, 2nd 
derivatives..
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Analytical Solution (cont’d)

! Thus, we must have ...

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

and

Differential equation 
that the amplitude 
function must obeyNote:  the phase advance is an

observable quantity.  So, while could 
choose different value of const,  then 
would just scale    accordingly; thus, 
valid to choose const = 1.

β

46

The function β(s) is the
local wavelength (λ/2π)
of the oscillatory motion.
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Some Comments
! We chose the amplitude function to be a positive definite function in its 

definition, since we want to describe real solutions.
! The square root of the amplitude function determines the shape of the 

envelope of a particle’s motion.  But the amplitude function also is a local 
wavelength of the motion. 

! This seems strange at first, but ...
• Imagine a particle oscillating within our focusing lens system; if the lenses are 

suddenly spaced further apart, the particle’s motion will grow larger between 
lenses, and additionally it will travel further before a complete oscillation takes 
place.  If the lenses are spaced closer together, the oscillation will not be 
allowed to grow as large, and more oscillations will occur per unit distance 
travelled.

• Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate of 
change of the oscillation phase as well as the maximum oscillation amplitude.  
These attributes must be tied together.

47
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The Amplitude Function, 

! Since the amplitude function is a wavelength, it will have numerical values 
of many meters, say.  However, typical particle transverse motion is on 
the scale of mm.  So, this means that the constant A must have units of 
m1/2, and it must be numerically small.  More on this subject coming up...

β

Higher    -- 
 smaller phase advance rate
 larger beam size

Lower    -- 
 greater phase advance rate
 smaller beam size

β

β
F F FF D D D D

48
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Equation of Motion of Amplitude 
Function

From
2ββ′′

− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.

(in regions where K is either zero or constant)

49
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Piecewise Solutions
! K = 0:

• since            ,  then from original diff. eq.:

•         the parabola is always concave up

! K > 0, K < 0:

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

2ββ′′
− (β′)2 = 4β > 0

β′′ > 0

β(s) ∼ sin / cos or sinh / cosh + const

Parabola!

50
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Courant-Snyder Parameters, &
Connection to Matrix Approach

! Suppose, for the moment, that we know the value of the amplitude 
function and its slope at two points along our particle transport system.

! Have seen how to write the motion of a single particle in one degree of 
freedom between two points in terms of a matrix.  We can now recast the 
elements of this matrix in terms of the local values of the amplitude 
function.  

! Define two new variables,

! Collectively,                 are called the Courant-Snyder Parameters 
(sometimes called “Twiss parameters” or “lattice parameters”)

α ≡ −

1

2
β′, γ ≡

1 + α2

β

β, α, γ

51

2��00 � (�0)2 + 4K�2 = 4 == K� = � + ↵0
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The Transport Matrix
! We can write:

! Solve for a and b in terms of initial conditions and write in matrix form

• we get:

(

x
x′

)

=







(

β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

−
1+α0α
√

β0β
sin ∆ψ −

α−α0√

β0β
cos∆ψ

(

β0

β

)1/2

(cos ∆ψ − α sin ∆ψ)







(

x0

x′

0

)

52

x(s) = a

p
� sin� + b

p
� cos� 

       is the phase advance from point 
s0 to point s in the beam line
� 
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Periodic Solutions
! Within a system made up of periodic sections it is natural to want the 

beam envelope to have the same periodicity.
! Taking the previous matrix to be that of a periodic section, and demanding 

the C-S parameters be periodic yields...

Mperiodic =

(

cos ∆ψ + α sin ∆ψ β sin ∆ψ
−γ sin ∆ψ cos ∆ψ − α sin ∆ψ

)

Mperiodic

Natural choice in a circular accelerator, when 
values of β, α above correspond to one particular 
point in the ring

53
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Propagation of 
Courant-Snyder Parameters

! We can write the matrix of a periodic section as:

! where
detJ = 1, trace(J) = 0; J2 = −I

M0 =

(

cos ∆ψ + α sin ∆ψ β sin ∆ψ
−γ sin ∆ψ cos∆ψ − α sin ∆ψ

)

=

(

1 0

0 1

)

cos ∆ψ +

(

α β
−γ −α

)

sin ∆ψ

= I cos∆ψ + J sin ∆ψ = eJ∆ψ

J =

(

α β
−γ −α

)

54

↵, � are values at the beginning/end of

the periodic section described by matrix M
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Tracking β, α, γ ...
! Let M1 and M2 be the “periodic” matrices as calculated at two points, and 

M  propagates the motion between them.  Then,

! Or, equivalently,
• if know C-S parameters (i.e., J ) at one point, can find them at another point if 

given the matrix for motion in between:

! Doesn’t have to be part of a periodic section; valid between any two 
points of an arbitrary arrangement of elements

M2 = M M1 M
−1

J2 = M J1 M
−1

55

J =

(

α β
−γ −α

)

M M

M1

M2 Mi = I cos� + Ji sin� 
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Evolution of the Phase Advance
! Again, if know parameters at one point, and the matrix from there to 

another point, then

!  So, from knowledge of matrices, can “transport” phase and the Courant-
Snyder parameters along a beam line from one point to another

M1→2 =

(

a b
c d

)

=⇒
b

aβ1 − bα1

= tan∆ψ1→2

56
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Simple Examples

! Propagation through a Drift:

! Propagation through a Thin Lens:

! Given α, β at one point, can calculate α, β at all downstream points 

M =

(

1 L
0 1

)

=⇒ ∆ψ = tan−1

(

L

β1 − Lα1

)

β = β0 − 2α0L + γ0L
2

α = α0 − γ0L

γ = γ0M =

(

1 0

−1/F 1

)

=⇒ ∆ψ = 0

β = β0

α = α0 + β0/F

γ = γ0 + 2α0/F + β0/F 2

57
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Choice of Initial Conditions

!   Have seen how  β can be propagated from one point to another.  Still, 
have the choice of initial conditions...

!   If periodic system, like a “ring,” then natural to choose the periodic 
solution for  β, α 

!   If beam line connects one ring to another ring, or a ring to a target, then 
we take the periodic solution of the upstream ring as the initial condition 
for the beam line

!   In a system like a linac, wish to “match” to desired initial conditions at 
the input to the system (somewhere after the source, say) using an 
arrangement of focusing elements

58



! As an example, consider again the FODO system

! Thus, use above matrix of the periodic section to compute functions at the 
exit of the F quad..
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Computation of 
Courant-Snyder Parameters

M =

(

1 0

−1/F 1

) (

1 L
0 1

) (

1 0

1/F 1

) (

1 L
0 1

)

=

(

1 L
−1/F 1 − L/F

) (

1 L
1/F 1 + L/F

)

=

(

1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)

F

-F

F

L L

59
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FODO Cell
! From the matrix:

! If go from D quad to D quad, simply replace F --> -F  in matrix M
• at exit:

traceM = a + d = 2 − L2/F 2
= 2 cos µ sin

µ

2
=

L

2F

M =

(

1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)

=

(

a b
c d

)

Here, µ is
phase advance
through one
periodic cell

60

call µ = � 

� =
b

sinµ
= 2F

s
1 + L/2F

1� L/2F

� = 2F

s
1� L/2F

1 + L/2F

↵ =
a� d

2 sinµ
=

s
1 + L/2F

1� L/2F

↵ = �

s
1� L/2F

1 + L/2F



! In drift, amplitude function is a parabola:

! Very small beam at IP requires very large beam in the final focus triplet:
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Low-Beta

61

�(s) = �⇤ ⇥1 + (s/�⇤)2
⇤

0 L 2L 3L 4L
!4

!2

0

2

4

longitudinal position

x
!mm"

Figure 2.10: Particles’ trajectories in a drift space. The beam looks like this
in a collision straight section of a collider. We adjust the beam so that its size
become minimum at the center of the physics detector.

32

⇠
p

�

�̂ ⇡ (L⇤)2/�⇤
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Betatron Tune

! Since            and 
then the total phase advance around the circumference is given 

by

The tune, ν, is the number of transverse  “betatron oscillations” 
per revolution.  The phase advance through one FODO cell is 
given by 

   
Example:  For the Tevatron, L/2F = 0.6, and since there are 

about 100 cells, the total tune is about 100 x (2 x 0.6)/2π ~ 20
! Note:  since betatron tune ~ 20, and synchrotron tune ~ 0.002, it is 

(relatively) safe to consider these effects independently
! “circular” accels --> resonance conditions; choose tunes carefully!
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FODO Cells (arcs)

L 30:= F 25:= smu
L
2 F⋅

§̈
©

·
¹

:= αp
1 smu+

1 smu−
:= β p 2 F⋅ αp⋅:=

γ
1 αp

2
+

β p
:=

αm
1 smu−

1 smu+
−:= βm 2 F⋅( ) αm−( )⋅:=

β x s( ) β p 2 αp⋅ s⋅− γ s2⋅+ s L<if

βm 2 αm⋅ s L−( )⋅− γ s L−( )2⋅+ otherwise

:=

β y s( ) βm 2 αm⋅ s⋅− γ s2⋅+ s L<if

β p 2 αp⋅ s L−( )⋅− γ s L−( )2⋅+ otherwise

:=

s 0 0.01, 2 L⋅..:=

L 30= F 25=

0 10 20 30 40 50 60
0

20

40

60

80

100

120

βx s( )

βy s( )

s

sin(µ/2) = L/2F = 0.6 −→ µ ≈ 1.2(69◦)
βmax = 2(25 m)

√

1.6/0.4 = 100 m

βmin = 2(25 m)
√

0.4/1.6 = 25 m
ν ≈ 100 × 1.2/2π ∼ 20

Ex:  Tevatron Cell

�max,min = 2F

�
1± L/2F

1⇥ L/2F

entering, exiting a thin lens quad:

⇥(s) = ⇥0 � 2�0s + ⇤0s
2

between the quadrupoles:

��� = �2�/F

63

max, min values of β:



! Complicated arrangements can be fed into now-standard computer codes 
for analysis

• TRANSPORT, MAD, DIMAD
• TRACE, TRACE3D, COSY
• SYNCH, CHEF, many more ...
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Computer Codes

64

0 10 20 30 40
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Review
! Found analytical solution to Hill’s Equation:

! So far, discussed amplitude function, β

! What about A?
• Given β(s), how big is the beam at a particular location?         mm?  cm?  m?
• If perturb the beam’s trajectory, how much will it move downstream?

! Want to go from discussing single particle behavior to discussing a 
“beam” of particles

x(s) = A
√

β(s) sin[ψ(s) + δ]
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Betatron Oscillation Amplitude
! Transverse oscillations in a synchrotron (or beam line) are called Betatron 

Oscillations (first observed/analyzed in a betatron)
! Write x,x’ in terms of initial conditions x0, x’0 :

=⇒ x(s) =

√

β(s)

β0

[x0 cos∆ψ + (α0x0 + β0x
′

0) sin∆ψ]

amplitude: A =

√

x2

0
+(α0x0+β0x′

0
)2

β0

66

x = a
√

β sinψ + b
√

β cos ψ

x′ =
1
√

β
([b − aα] cos ψ − [a + bα] sinψ)

↓

a =
x0√
β0

, b =
α0x0 + β0x

′

0√
β0

x

0
=

1p
�

([b� a↵] cos� � [a+ b↵] sin� )

x(s) = a

p
� cos� + b

p
� sin� 
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Free Betatron Oscillation
! Suppose a particle traveling along the design path is given a sudden 

(impulse) deflection through angle
! Then, downstream, we have

∆x
′
= x

′

0 = ∆θ

s0

s

x

x(s) = ∆θ
√

β0β(s) sin[ψ(s) − ψ0]

67

Example:

Suppose �✓ = 0.4 mrad, �0 = 4.0 m, �(s) = 6.4 m,

and � = n⇥ 2⇡ + 30

�
. Then x(s) = 1 mm.
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Courant-Snyder Invariant
! In general,

x = A
√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

A2
= γx2

+ 2αxx′
+ βx′2

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2

β

While C-S parameters evolve along the beam line, the
  combination above remains constant.

68
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! The eqn. for the C-S invariant is that of an ellipse.
! If compute the area of the ellipse, find that 

area = πA
2

x
′

x

area = πA
2
≡ ε

x̂ =

√

βε/π

x̂′ =

√

γε/π

x(x′ = 0) =
√

ε/πγ

x′(x = 0) =
√

ε/πβ

i.e., while the ellipse 
changes shape along the 
beam line, its area remains 
constant

Emittance =  area within a phase 
        space trajectory

Properties of the 
  Phase Space Ellipse

γx2
+ 2αxx′

+ βx′2
= A2

69
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Motion in Phase Space
! Follow phase space trajectory...

x

x’

x’

x equal areas

Bea
m 

Lin
e .

..

70

Phase Space area is preserved
      (Liouville’s Theorem)
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Beam Emittance
! Phase space area which contains a certain fraction of the beam particles
! Popular Choices:

• 95%
• 39%
• 15%

x’

x

71
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Adiabatic Damping from Acceleration
! Transverse oscillations imply transverse momentum.  As accelerate, 

momentum is “delivered” in the longitudinal direction (along the s-
direction).  Thus, on average, the angular divergence of a particle will 
decrease, as will its oscillation amplitude, during acceleration.

! The coordinates x-x’ are not canonical conjugates, but x-px are;  thus, the 
area of a trajectory in x-px phase space is invariant for adiabatic changes 
to the system.

s

∆p, from RF system

72
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Normalized Beam Emittance

! Hence, as particles are accelerated, the area in x-x’ phase space is not 
preserved, while area in x-px  is preserved.  Thus, we define a 
“normalized” beam emittance, as

! In principle, the normalized beam emittance should be preserved during 
acceleration, and hence along the chain of accelerators from source to 
target.  Thus it is a measure of beam quality, and its preservation a 
measure of accelerator performance.

! In practice, it is not preserved -- non-adiabatic acceleration, especially at 
the low energy regime; non-linear field perturbations; residual gas 
scattering; charge stripping; field errors and setting errors; etc. -- all 
contribute at some level to increase the beam emittance.  Best attempts 
are made to keep this as small as possible.

εN ≡ ε · (βγ)

73
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Gaussian Emittance
! So, normalized emittance that contains a fraction f of a Gaussian beam is:

! Common values of f :
Lorentz!

f εN/(βγ)
95% 6πσ2/β

86.5% 4πσ2/β
39% πσ2/β
15% σ2/β

Perhaps most commonly 
used, sometimes called the 
“rms” emittance; but, always 
ask if not clear in context!

74

✏
N

= �2⇡ ln(1� f)
�2
x

(s)

�(s)
(��)



! For each particle,
! Average over the distribution...
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Emittance in Terms of Moments
x = A

√

β sinψ x′ =
A
√

β
(cos ψ − α sinψ)

x2 = A2β sin2 ψ x′2 =
A2

β
(cos2 ψ + α2 sin2 ψ − α sin 2ψ)

〈x2〉 =
1

2
〈A2〉β 〈x′2〉 =

〈A2〉

2β
(1 + α2) =

1

2
〈A2〉γ

xx′ = A2(
1

2
sin 2ψ − α sin2 ψ)

〈xx′〉 = −
1

2
〈A2〉α

and ...

From which the average of all particle emittances will be π〈A2〉 = 2π
√

〈x2〉〈x′2〉 − 〈xx′〉2

and the “normalized rms emittance” can be defined as: 

εN = π(βγ)
√

〈x2〉〈x′2〉 − 〈xx′〉2

βγ −
α
2 = 1

75
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TRANSPORT of Beam Moments
! For simplicity, define                ;  then,

! Note that:

! Correlation Matrix: 

ε̃ ≡
1

2
〈A2〉

ε̃J =

(

ε̃α ε̃β
−ε̃γ −ε̃α

)

=

(

−〈xx′〉 〈x2〉
−〈x′2〉 〈xx′〉

)

Σ ≡

(

〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)

= −ε̃JS, where S =

(

0 1

−1 0

)

Here, M is from point 1 to 
point 2 along the beam line
(same M as previously)
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Summary
!   So, can look at propagation of amplitude function through beam line 

given matrices of individual elements.  Beam size at a particular location 
determined by

!   Or, given an initial particle distribution, can look at propagation of second 
moments (of position, angle) given the same element matrices, and 
hence the propagation of the beam size,              .

!   Either way, can separate out the inherent properties of the beam 
distribution from the optical properties of the hardware arrangement

xrms(s) =
√

β(s)εN/π(βγ)
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Effects due to Momentum Distribution
!   Beam will have a distribution in momentum space
!   Trajectories of individual particles will spread out when pass through 

magnetic fields

•   B is constant; thus  Δθ/θ ~ - Δp/p
•   path is also altered by the gradient fields...
•  

!  These trajectories are described by the Dispersion Function:

!   Consequently, affects beam size:

!

D(s) ≡ ∆xc.o.(s)/(∆p/p)

�x2⇥ = ⇤N�(s)/(⌅⇥v/c) + D(s)2�(�p/p)2⇥
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Dispersion Suppressor
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Chromaticity
! Focusing effects from the magnets will also depend upon momentum:

! To give all particles the similar optics, regardless of momentum, need a 
“gradient” which depends upon momentum.  Orbits spread out 
horizontally  (or vertically) due to dispersion, can use a sextupole field:

•  which gives
•   
•                                i.e., a field gradient which depends upon momentum

! Chromatic aberrations are the variation of optics with momentum; 
chromaticity is the variation of tune with momentum.  We use sextupole 
magnets to control/adjust; but, now introduces nonlinear fields ...

•      can create a transverse dynamic aperture!

x′′ + K(s, p)x = 0 K = e(∂By(s)/∂x)/p
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Collider Accelerator Lattice
! can build up out of modules

! check for overall stability -- x/y

! meets all requirements of the program

• Energy --> circumference, fields, etc.

• spot size at interaction point:  β minimized, D=0

• etc...

expt.

RF

bend, w/ 
FODO cells

in out
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FODO Cells (arcs)

L 30:= F 25:= smu
L
2 F⋅

§̈
©

·
¹

:= αp
1 smu+

1 smu−
:= β p 2 F⋅ αp⋅:=

γ
1 αp

2
+

β p
:=

αm
1 smu−

1 smu+
−:= βm 2 F⋅( ) αm−( )⋅:=

β x s( ) β p 2 αp⋅ s⋅− γ s2⋅+ s L<if

βm 2 αm⋅ s L−( )⋅− γ s L−( )2⋅+ otherwise

:=

β y s( ) βm 2 αm⋅ s⋅− γ s2⋅+ s L<if

β p 2 αp⋅ s L−( )⋅− γ s L−( )2⋅+ otherwise

:=

s 0 0.01, 2 L⋅..:=

L 30= F 25=

0 10 20 30 40 50 60
0

20

40

60

80

100

120

βx s( )

βy s( )

s

sin(µ/2) = L/2F = 0.6 −→ µ ≈ 1.2(69◦)
βmax = 2(25 m)

√

1.6/0.4 = 100 m

βmin = 2(25 m)
√

0.4/1.6 = 25 m
ν ≈ 100 × 1.2/2π ∼ 20

Ex:  Tevatron Cell

�max,min = 2F

�
1± L/2F

1⇥ L/2F

through a thin quad

⇥(s) = ⇥0 � 2�0s + ⇤0s
2 between quadrupoles

��� = �2�/F
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Long Straight Section

! a “matched insertion” 
that propagates the 
amplitude functions 
from their FODO 
values, through the 
new region, and 
reproduces them on 
the other side

! Here, we see an LHC 
section used for beam 
scraping
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s (m)   [*10**(  3)]
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Interaction Region
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Low-Beta “Squeeze”
! As beam is larger at injection than it is at collision energy, do not want a 

“low-beta” condition during injection process
! Thus, the triplet and other nearby quadrupoles are tuned to adjust beam 

size at the focus; the beam is “squeezed” near the end of the sequence

Tevatron
Example
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Put it all Together

! make up a synchrotron out 
of FODO cells for bending, 
a few matched straight 
sections for special 
purposes...

inj/extr
RF

CDF

D0

scrape

FODO’s

abort
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Put it all Together

! make up a synchrotron out 
of FODO cells for bending, 
a few matched straight 
sections for special 
purposes...
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Corrections and Adjustments
! Correction/adjustment systems required for fine control of accelerator:

• correct for misalignment, construction errors, drift, etc.
• adjust operational conditions, tune up

! Use smaller magnetic elements for “fine tuning” of accelerator
• dipole steering magnets for orbit/trajectory adjustment
• quadrupole correctors for tune adjustment
• sextupole magnets for chromaticity adjustment

88

! Typically, place correctors and 
instrumentation near the major 
quadrupole magnets -- “corrector 
package”

• control steering, tunes, 
chromaticity, etc.

• monitor beam position (in 
particular), intensity, losses, etc.
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Linear Distortions
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Orbit distortion due to 
single dipole field error
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Envelope Error (Beta-beat) due 
to gradient error

gradient error also generates a 
shift in the betatron tunes...
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Resonances and Tune Space
! Error fields are encountered repeatedly each revolution -- can be 

resonant with tune 

• repeated encounter with a steering (dipole) error produces an orbit distortion:

» thus, avoid integer tunes

• repeated encounter with a focusing (quad) error produces distortion of 
amplitude fcn:

» thus, avoid half-integer tunes

�x � 1
sin⇥�

��/� � 1
sin 2⇤⇥
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Nonlinear Resonances

! Phase space w/ sextupole field present (By ~ x2)

• tune dependent:

• “dynamic aperture”

! Thus, avoid tune values:

•       k,  k/2,  k/3, ...
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Tune Spread

! due to momentum -- chromaticity
• “natural” chromaticity due to particle rigidity
• also, field errors in magnets ~ x2 in the 

presence of  Dispersion

! due to nonlinear fields

• field terms ~  x2, x3, etc.

!   --> “decoherence” of  beam position signal

!a" small nonlinearity
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!c" large chromaticity
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Figure 4.4: Turn-by-turn oscillations excited by a kicker magnet in the Teva-
tron under three different conditions. As expected from the simulation of Fig-
ure 4.3, the oscillations of the beam centroid damps down (decoherence). The
speed of the decoherence depends on the strength of the nonlinearity. When
the chromaticity is non-zero, the envelope also has the oscillatory structure.
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“kick” the beam
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Tune Diagram

! Always “error fields” in the real accelerator

! Coupled motion also generates resonances (sum/difference 
resonances)

• in general, should avoid: m �x ± n �y = k

avoid ALL rational tunes???

93



M. Syphers      HCPSS2012     Aug 2012

Tune Diagram
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Tune Diagram
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Tune Diagram
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Tune Diagram
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Tune Diagram
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Tune Diagram
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Break till Day Three...
! Tomorrow:

• beam-beam interaction
• energy deposition and synchrotron radiation
• diffusion and emittance growth
• hour glass and crossing angles
• luminosity optimization
• future directions
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