Generators

Lecture 2: Modern parton showers and higher orders

John Campbell, Fermilab

- By construction, a parton shower is correct only for successive branchings that are collinear or soft (i.e. only leading/next-to-leading logs).
- Should therefore take care when describing final states in which there is either manifestly multiple hard radiation, or its effects might be important.
 - example: simulation of background to a SUSY search in the ATLAS TDR.

- Higher-order corrections are not included.
- Uncertainty can only be estimated by comparison with data and/or between different parton shower implementations.
 - exact details of each shower differ, possibility for significant differences.

• As simplest example, consider Drell-Yan process: $pp \rightarrow Z \ (+n \ jets)$ (one power of α_s per jet)

c.f. earlier, leading log: $\alpha_s^n L^{2n}$

How can parton shower recover more of fixedorder accuracy?

accuracy of NLL parton shower

accuracy of tree-level Z+2 jet calculation

- Use exact matrix elements for the first/hardest emission from the parton shower instead of approximate form.
- Captures one extra term in the expansion
 - but not completely correctly
 - real radiation is taken into account but not virtual (loop diagram) contributions
- Hence shape improved for observables dominated by low-multiplicity emission, but overall normalization same as before.

Mostly historical, not a feature of modern generators

PS + one matched emission

• Merging: include more exact matrix elements as initial hard scatters, with merging scale determining transition from approx. to exact MEs.

- Perform matrix element corrections to multiple emissions
- Introduces an unphysical merging scale in order to perform corrections for each jet multiplicity
 - again, impact only on shapes of relevant distributions - for observables up to the number of jet samples merged
 - again, no possible improvement in rate
- Various techniques for combining samples without overcounting in shower:
 - CKKW (Catani, Krauss, Kuhn, Webber) CKKW-L (Lönnblad)
 SHERPA
 - MLM (Mangano) ALPGEN

PS + multi-jet merging for up to 3 jets

Limits of merging approaches

- Even after adding additional hard radiation by merging methods, overall normalization of cross section remains a leading order estimate
 - usual disadvantages, such as sensitivity to scale choices.
- Natural question: how to obtain NLO accuracy with a parton shower?
- Many NLO parton-level predictions available but without parton shower benefits.
- Obvious problem:
 - NLO already includes one extra parton emission.
 - the hard part of this can be matched as before.
 - the soft/collinear part contains singularities that must be extracted in a particular way (e.g. subtraction).

Reminder: general structure of NLO

- Schematic picture of subtraction method for NLO calculations.
- In general: many subtractions ("counter-events") for each real radiation event.
- How can this be combined with a shower?

parton shower

• Usual parton shower: $d\sigma^{PS} = d\Phi_0 B(\Phi_0) \times [shower]$

(Born level exact matrix element, shower generates the emissions)

• At NLO, group into Born-like and non-singular radiation terms:

$$d\sigma^{NLO} = d\Phi_0 \bar{B}(\Phi_0) + d\Phi_1 N(\Phi_1)$$

Born-like non-singular

Matching strategies

- Two main methods: as introduced by POWHEG and MC@NLO.
- POWHEG (Frixione, Nason, Oleari)
 - singular emission = complete real emission expression
 - non-singular emission = 0

 $\mathrm{d}\sigma^{POWHEG} = \mathrm{d}\Phi_0 \bar{B}(\Phi_0) \times \left[\mathrm{shower}\right]$

- "local K-factor", real exponentiated in Sudakov, positive-weight generator.
- MC@NLO (Frixione, Webber)
 - singular emission = subtraction term generated by shower kernel
 - non-singular emission = complete real emission shower kernel

 $d\sigma^{MC@NLO} = d\Phi_0 \bar{B}'(\Phi_0) \times [shower] + [real - shower kernel]$

usual Sudakov factor but possibility of negative weights.

NLO + PS demonstration: MC@NLO

• First real matching of a parton shower (HERWIG) onto a NLO calculation.

- Stand-alone Fortran package, compatible with HERWIG or HERWIG++.
- Available final states:
 - single boson (W/Z/Higgs)
 - vector boson pairs
 - heavy quark pairs
 - single top (s, t, Wt channels)
 - associated Higgs production
- Spin correlations included except in ZZ decay.
- NLO corrections in production only (i.e. not in decays).
- Implementation of new processes by hand.

Alwall, Artoisenet, Frederix, Frixione, Fuks, Hirschi, Maltoni, Mattelaer, Pittau, Serret, Stelzer, Torrielli, Zaro

- Automated MC@NLO
- Parton shower matching performed generically
 - already applied to:
 - ZZ
 - Zbb
 - Wbb
 - W+2 jets
- One-loop matrix elements also computed in an automated fashion (Madloop).

Generators - John Campbell - 15

- One-loop matrix element calculator using numerical D-dimensional unitarity
 - recycles tree-level amplitudes into loops
 - determination of one-loop integral coefficients and rational terms using OPP method (Ossola, Pittau, Papodopoulos)

 Also, very useful tool for cross-checks of analytic results. From this page you can run MadLoop to obtain the value of the virtual contribution for a given process, evaluated on a single phase space point. The finite part, as well as the single and double pole of the loop-amplitude squared against the born are provided MadLoop will run on the <u>MadGraph</u> server at <u>CP3/UCLouvain</u>.

Please respect the following constraints on the input process:

- -> It must have contributing tree-level (Born) diagrams
- -> All contributing diagrams must factorize the same powers of all couplings
- -> If any born diagram contains a 4-gluon vertex, be aware that the corresponding R2 contribution will be missing
- -> The process must not only include gluons
- -> The numbers you will get correspond to the following <u>conventions</u>

Please input below the process, using the MadGraph5 particle names and conventions (spaces between particles and ">" to separate initial and final state):

		QED po	wer:	0			
Model:	SM, 5 light flavours	; (see	the	model	parameters	<u>here</u>)	

Submit

Madloop results

	Process	μ	n_{lf}	Cross section	Cross section (pb)	
				LO	NLO	
a.1	$pp \rightarrow t\bar{t}$	m_{top}	5	123.76 ± 0.05	162.08 ± 0.12	
a.2	$pp \rightarrow tj$	m_{top}	5	34.78 ± 0.03	41.03 ± 0.07	
a.3	$pp \rightarrow tjj$	m_{top}	5	11.851 ± 0.006	13.71 ± 0.02	
a.4	$pp \rightarrow t\bar{b}j$	$m_{top}/4$	4	25.62 ± 0.01	30.96 ± 0.06	
a.5	$pp \rightarrow t \bar{b} j j$	$m_{top}/4$	4	8.195 ± 0.002	8.91 ± 0.01	
b.1	$pp\!\rightarrow\!(W^+\rightarrow)e^+\nu_e$	m_W	5	5072.5 ± 2.9	6146.2 ± 9.8	
b.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e j$	m_W	5	828.4 ± 0.8	1065.3 ± 1.8	
b.3	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e jj$	m_W	5	298.8 ± 0.4	300.3 ± 0.6	
b.4	$pp\!\rightarrow\!(\gamma^*/Z\rightarrow)e^+e^-$	m_Z	5	1007.0 ± 0.1	1170.0 ± 2.4	
b.5	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+e^- j$	m_Z	5	156.11 ± 0.03	203.0 ± 0.2	
b.6	$pp\!\rightarrow\!(\gamma^*/Z\rightarrow)e^+e^-jj$	m_Z	5	54.24 ± 0.02	56.69 ± 0.07	
c.1	$pp \! \rightarrow \! (W^+ \rightarrow) e^+ \nu_e b \bar{b}$	$m_W + 2m_b$	4	11.557 ± 0.005	22.95 ± 0.07	
c.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e t \bar{t}$	$m_W + 2m_{top}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001	
c.3	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- b \bar{b}$	$m_Z + 2m_b$	4	9.459 ± 0.004	15.31 ± 0.03	
c.4	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- t \bar{t}$	$m_Z + 2m_{top}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002	
c.5	$pp \mathop{\rightarrow} \gamma t \bar{t}$	$2m_{top}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003	
d.1	$pp {\rightarrow} W^+W^-$	$2m_W$	4	29.976 ± 0.004	43.92 ± 0.03	
d.2	$pp \rightarrow W^+W^- j$	$2m_W$	4	11.613 ± 0.002	15.174 ± 0.008	
d.3	$pp \mathop{\rightarrow} W^+ W^+ jj$	$2m_W$	4	0.07048 ± 0.00004	0.1377 ± 0.0005	
e.1	$pp \rightarrow HW^+$	$m_W + m_H$	5	0.3428 ± 0.0003	0.4455 ± 0.0003	
e.2	$pp \rightarrow HW^+ j$	$m_W + m_H$	5	0.1223 ± 0.0001	0.1501 ± 0.0002	
e.3	$pp \rightarrow HZ$	$m_Z + m_H$	5	0.2781 ± 0.0001	0.3659 ± 0.0002	
e.4	$pp \rightarrow HZ j$	$m_Z + m_H$	5	0.0988 ± 0.0001	0.1237 ± 0.0001	
e.5	$pp \rightarrow H t \bar{t}$	$m_{top} + m_H$	5	0.08896 ± 0.00001	0.09869 ± 0.00003	
e.6	$pp \rightarrow Hb\bar{b}$	$m_b + m_H$	4	0.16510 ± 0.00009	0.2099 ± 0.0006	
e.7	$pp \mathop{\rightarrow} Hjj$	m_H	5	1.104 ± 0.002	1.036 ± 0.002	

Impressive list of NLO calculations

2 weeks x 150 nodes

(this mode of running not yet public)

- Stand-alone Fortran package, compatible with any shower.
- Available final states:
 - single boson (W/Z/Higgs)
 - vector boson pairs
 - heavy quark pairs
 - single top (s, t, Wt channels)
 - dijets
 - vector boson + jet, Z+2 jets
 - Higgs + 1 or 2 jets
 - Wbb
 - top pair + jet / H / Z

Many of these thanks to POWHEG-BOX. Alioli, Hamilton, Nason, Oleari, Re

simple way for theorists to incorporate latest parton-level NLO calculations.

- POWHEG and MC@NLO methods also used in SHERPA.
- Recent application to W+1,2,3 jets.

Höche, Krauss, Schönherr, Siegert

• Smooth interpolation between POWHEG, MC@NLO procedures.

• Real differences that may be useful and/or serve as a warning. see: Nason and Webber, arXiv:1202.1251

differences at high p_T, but NNLO corrections large there

very different, reminder of sensitivity to NNLO effects

Beyond MC@NLO and POWHEG

- NLO inclusive cross section, exact matrix elements for further jets.
 - "MENLOPS" and "ME&TS".

Hamilton, Nason; Höche, Krauss, Schönherr, Siegert

- NLO precision for each jet emission: merging samples that are each matched to correct NLO
 - "MEPS@NLO"

Höche, Krauss, Schönherr, Siegert

• Very recent developments and ongoing intense activity.

MEPS@NLO: W+0,1,2 jets NLO, W+3,4 LO

- Next frontier: parton shower + NNLO?
- Problem: even parton level NNLO predictions scarce.

Drell-Yan, Higgs (all except ttH), diphotons hadron colliders

2- and 3-jet production

lepton colliders

- Many advantages at NNLO:
 - normalization of a cross section begins to be trustworthy at NLO,
 - associated theoretical uncertainty only reasonably estimated at NNLO.
- Reasons for scarcity:
 - ingredients for a NNLO calculation are similar to, but more complicated than, those that enter at NLO
 - no generic, well-established procedure for dealing with singularities.

- One way to envision the different NNLO contributions is to consider all possible cuts of a 3-loop diagram.
- Example: 3-jet production in e⁺e⁻ annihilation.
 - (a) 2-loop virtual diagrams.
 - (b) 1-loop squared.
 - (c) interference of 1-loop and tree, both with extra parton
 → infrared singularities (easy)
 - (d) tree with two extra partons \rightarrow [infrared singularities]²
- At present, no universal procedure (like dipole subtraction) formulated for dealing with (d)

- This summer, first NNLO hadron collider calculation with color in the final state
 - quark-initiated top pair production (good for Tevatron, not so much LHC).
 - not differential, but cross-section only.

Barnreuther, Czakon, Mitov

- NLO accuracy combined with parton shower often best option when available
 - not always possible, e.g. no analytic calculation interfaced and generic numerical approaches too slow
 - further refinements implemented first at parton-level, e.g. spin correlations
- Automated 1-loop approaches
 - HELAC-NLO: e.g. tt+2 jets, tttt
 GoSam: e.g. WW+2 jets
 Cullen et al
- Other tools:
 - MCFM: W/Z+2 jets, Wbb, Zbb, diboson, top processes JC, Ellis, Williams
 - VBFNLO: double and triple boson production, VBF Arnold et al
 - NLOJET++: two and three jet production
 - Rocket/MCFM+: W+3 jets, WW+jet
 - Blackhat: 4 jets, W/Z + up to 4 jets, photon+jets

Bern et al

Melia et al

Nagy

Generators - John Campbell - 25

- One of the main tools pushing the boundaries of NLO computations.
- On-shell methods for loops (similar to MadLoop), SHERPA for real emissions.
- No public code available, but event n-tuples on request.

• Fortran code MCFM: "one-stop shopping" for many NLO predictions.

http://mcfm.fnal.gov (v6.3, August 2012)

JC, R. K. Ellis, C. Williams (main authors) F. Caola, R. Frederix, H. Hartanto F. Maltoni, F. Tramontano, S. Willenbrock

- Standard Model processes involving photons,W,Z + jets, top quarks, Higgs.
- Decays of unstable particles are included, maintaining spin correlations and (sometimes) including NLO effects.
- Photon fragmentation and realistic isolation included.
- Cross sections and differential distributions, flexible cuts.
- Analytic helicity amplitudes calculated from scratch or taken from literature.
- Slightly-modified implementation of Catani-Seymour dipole subtraction.

- Effect not included in current parton showers: NLO radiation in decay.
- Small width $\Gamma t/mt < 1\% \rightarrow factorization of production and decay$

• Orders of calculation populate different jet bins at differing orders of accuracy.

Generators - John Campbell - 29

- Modern parton showers come in many flavors
 - multi-jet merged samples (MLM, CKKW)
 - NLO matched for first emission (MC@NLO, POWHEG)
 - NLO matched for first emission, multi-jet merged (ME&TS, MENLOPS)
 - NLO matched for many jets (MEPS@NLO)
- Availability and maturity of predictions in that order.
- Developments at the parton level too
 - refinements of NLO that will eventually make their way into the PS
 - beginning of NNLO for colored final states
- Many tools: always pros and cons; know limitations before making conclusions!