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Theoretical part
®00

Superconducting materials

Superconductor:

m Material which achieves superconductivity, a state of matter that has no
electrical resistance

m Extremely important for accelerators, because they can generate strong
magnetic fields which provide strong bending and focusing of the beam

m Requires very low temperatures: Fermilab best magnets need 1.9 K to
provide 14.6 T
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Theoretical part
(o1 79}

Quench antennas

m Quench: sudden and irreversible transition of the
superconductor into the normal-conducting state

m After the quench, the energy stored in the magnet must be
dissipated in order to protect the magnet
m Quench antennas: pick-up coil arrays sensitive to changes in
the magnetic flux = provides quench identification and
localization
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Theoretical part
ooe

Voltage changes along the ramp

m Quench antennas measure )
activity along the ramp, ) ‘\
all the way to quench, at . |
which point current is i -
extracted from the magnet 1T R [

m Voltage spikes along the ramp caused by many possible
reasons, some of which are:
m Current redistribution within the cable
m Frictional slipping of the cable
m Vibration of the magnets
m Epoxy cracks
m et cetera
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Event selection
®00

Aim of my work

m My job is to analyse 9 different ramps provided by the quench antennas, finding
the events prior to the quench, in order to find events that share qualities with
the quench

m | then extracted some features from the events, which | then fed to an
unsupervised ML clustering algorithm in order to classify the events
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Event selection
0®0

All ramps : plot
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Event selection
ooe

Filter

m To eliminate the background noise (v = 4.54 kHz), a sixth-order Butterworth

bandstop filter was implemented, reducing frequencies in the 4 to 6 kHz range
m From a continuous waveform, trying to build windows around the selected events
m Event selected when we find a peak in the voltage distribution above 1 mV

Comparison betwwen raw and filtered signal
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Features
©0000

Features matrix

m Machine learning is not typically done on time series data itself, we need
to take this windowed event below and convert it into features

m Features extracted from each event, working only with the filtered signal

m The features were then added to a matrix, which was then fed to an
unsupervised clustering algorithm to identify the representative events

Windowed event

0.010

0.005

0.000

~0.005

Voltage (V]

~0.010

-0.015

~0.020

0.069 0.070 0.071 0.072 0.073 0.074 0.075 0.076
Time [s] +2.0710000000e2

Jt
aE

Alberto Plebani (UniMi) rmilab, magnet department

ML approach to classifyin antenna signals 9



Features selected

Features
0@000

max min norm
Norm of
Maximum Minimum the
Voltage Voltage voltage
array
(continued)
full_int sec_int
Definite R
R Definite integral of
integral of the . R
. the integrated signal
signal

(continued)
lead_freq
Highest

frequency from
the cwt analysis

Figure: Description of the 19 features extracted from each windowed

event
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Features
00000

Plots displaying some features

Event number: 1776
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Features
0000

Plots displaying some features: quench event

Event number: 2192 (quench of antenna A07)
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Features
0000®

Quench events
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Clustering analysis
°0

Feature selection for the analysis

N ! ) m | decided to work with three
. features, one for each category:

>

8
E
2
Gl

B Voltage feature
B Signal shape feature
B Frequency feature

2

m 3 features selected: abs_max,
time_20 and occ_1000

m Plot on the left shows the

. ‘ correlation between the features
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Clustering analysis
oe

K-Means analysis

m The Hopkins statistic test gave as a result H = 0.97, therefore
we are almost certain that the dataset can be clusterized

m K-means is a clustering method that aims to partition n
observations into k clusters in which each observation belongs
to the cluster with the nearest mean

m | started the analysis by finding the optimal value of K, which
refers to the number of centroids. | did it using different tests:

m K-elbow

Silhouette

Consistency

WSS cross validation (Within-cluster sum of squares)
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Clustering analysis
€000

Finding best K

K-elbow analysis

m From the K-elbow analysis we can see that the best value of
K is 7, because it is the value in which the slope changes the
most

Distortion Score Elbow for KMeans Clustering

=== elbow atk’= 7, score = 33.401

distortion score
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Clustering analysis
0000

Finding best K

Silhouette analysis

m For the silhouette analysis, | tested the average score (the
higher the better, left picture) and the number of negative
single silhouette values (the lower the better, right picture).
The best value is K =3

Average score Negative values
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Clustering analysis
0000

Finding best K

Consistency and cross validation

m From the consistency test we get as best value K = 3, because it is the
value for which the standard deviation is the lowest

m From the cross validation we get K = 6 as best value, because it is the
value for which the slope changes the most
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Clustering analysis
feletel)

Finding best K

Conclusion

m From K-elbow analysis: K =7
m From the silhouette we get:

m Average score: K =3
m Negative values: K =3

m From WSS cross validation we get K =6

m From consistency we get K = 3

= We have chosen K = 3, which suggests that there might be 3
representative types of events happening along the ramp
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Clustering analysis
©0000000

K-means analysis with K = 3

Silhouette

m Cluster 0: 1510 events (3 quenches)
m Cluster 1: 813 events (0 quenches)
m Cluster 2: 168 events (6 quenches)

Best value of k = 3 Centroid distribution along the ramp
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Figure: Silhouette (left) and centroid distribution along the ramp (right), which
shows to which cluster each event belong to. Red crosses are the 9 quenches #
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Clustering analysis
0®000000

K-means analysis with K = 3

Visualization and Parallel plot

From the parallel plot (bottom right) we can see the trend of the features inside
each cluster, and from the other plots we can see where each event is clustered
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Clustering analysis
[eleY YoYeleYele)

K-means analysis with K = 3

Box plot

m From the box plot we can see what the average values of the elements
inside the cluster are

m Cluster with most quenches has a higher value of abs_max and occ_1000

m Cluster with no quenches has high value of time_20

1 1 1
Cluster Cluster Cluster
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Clustering analysis
00080000

K-means analysis with K = 3

Quenches in clusters

Red: cluster 0, green: cluster 2
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Clustering analysis
0000000

K-means analysis with K = 3

Some random events for Cluster 0
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Clustering analysis
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K-means analysis with K = 3

Some random events for Cluster 1
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Figure: Events in cluster 1: low amplitude events

Jt
aE

Alberto Plebani (UniMi) Fermilab, magnet department

ML approach to classifying quench antenna signals 25



Clustering analysis
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K-means analysis with K = 3

Some random events for Cluster 2
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Figure: Events in cluster 2: could show signs of current redistribution,
same as quenches
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Clustering analysis
00000008

K-means analysis with K = 3

Conclusion and perspectives

m We see some events that look like current redistribution
clustered together with the quench

m This events show a 1 kHz oscillation, which is the same
oscillation observed in some of the quenches

m Other events clustered together could be mechanical events,
because we see a sudden spike followed by a fast decrease

m Cluster 1 (0 quenches) is made mostly of low-amplitude events
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Summary and conclusions
°0

Summary and next steps

m Goal: use Machine Learning to identify and learn about the
disturbances in high field superconducting accelerator magnets
m Achieved:
Build a routine to automatically extract windowed events from
continuous data
Analysis of windowed events for signal characteristics, signal
shape and frequency distribution
Perform K-means clustering on data
m Result: current redistribution appears to happen along the
ramp, and sometimes it is recovered, whereas other times
quench happens

m This result will inform on the performance limits of Nb3Sn

Je
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Summary and conclusions
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Thank you for the attention

magnet department

ML approach to classifying qu antenna signals 2



	Theoretical part
	Event selection
	Features
	Clustering analysis
	Finding best K
	K-means analysis with K=3

	Summary and conclusions

