U.S. DEPARTMENT OF Office of

# Fermilab ENERGY Science

Pasilrans / 149,18 ns

10F &
alin
107
1 Muon g-2 (FNAL) - Run 1
a 20 B I E-Iu D 1-:|11:|

Time module 102.5 [us]

Analysis of the muon’s spin anomalous precession frequency
Final Report

Daniele Boccanfuso
Supervisors: Brendan Casey, Marco Incagli, Matteo Sorbara
28/09/2022



2

The muon magnetic moment

The muon’s magnetic moment is
given by iI = g%S

The g-factor of an elementary v T
particle is predicted to be 2 at the QED
first order. Higher order corrections

shift this value by ~1073. Y Y
We define the muon anomaly as: i ;
1|

All particles interacting with the muon (high order loops) contribute to a,,
even the ones we haven't discovered yet! This makes any discrepancy
between the theoretical and experimental value of a, hint of new
physics.
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Muon precession

A magnetic field induces a precession motion of the particle’s spin.

The precession frequency is given by:

The Muon g-2 collaboration aims to

BNL g-2 . -3

o 330

measure a, with a 140 ppb ¢
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uncertainty, by measuring with high
precision both the spin precession TR
frequency and the magnetic filed.

176 180 185

g 4.2 O

Experiment
Averasge

195 200 205 210 215

a,x 10" -1165900

The a, value from Runl analysis shows a 4.2¢0 tension with the

theoretical value.
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Measuring precession frequency

To measure the spin precession a
beam of polarized muons is injected
Into a superconducting storage ring,
where muons circulate for roughly
750 ps.

The spin rotates around the
magnetic field direction.

Muons decay into positrons. High
energy positrons have higher
probability to be emitted in the muon
spin direction: we detect more
positrons when the spin faces
towards the calorimeters and less
when it faces away. The frequency
of this oscillation is the signal we
want to measure: w,
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Positrons distribution

In the past weeks | have analyzed data from Run-2 acquisition period
(2019). This plot shows the positron time of arrival (X axis) and its energy
(Y axis) as measured by the calorimeters.

Events above 3100 MeV are due to pile-up.

Wiggle plot
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Wiggle Plot and Energy Spectrum

Wiggle_plot
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5 parameters fit function

The simplest equation that describes the number of positrons detected by
the calorimeters is the following:

N(t) = N“(_:,_J_'T (1 + Acos(wat + @))

Where:
— Ny is the number of muons at t=0
— yt is the muon lifetime in the lab frame of reference

— A Is the asymmetry, related to the probability that a positron is
emitted in the same direction of the spin

— w, IS the precession frequency we want to measure
— ¢ iIs the phase at t=0

To avoid cognitive bias, w, is blinded by a dimensionless parameter R,
defined as the unknown offset in ppm from a reference value.
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5 parameter fit results

Wiggle plot
hWiggle
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T-Method

The T-Method consist in building the wiggle plot summing all positrons
above an energy threshold:

At high energy positrons have higher asymmetry, which is better for
the fit, but there’s low statistics

At low energy positrons have lower asymmetry, but there is more
statistics

It's necessary to find a compromise between the two cases: we have
to determine the ideal energy threshold that minimizes the error on R

We build different wiggle plots by changing the lower energy threshold

We fit every one of them and the figure of merit will be the smallest
uncertainty on R

$& Fermilab
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T-Method

* The plot shows the
uncertainty on the R
parameter as a
function of the energy
threshold

 The distribution is
fitted with a quadratic
function and shows a °e
minimum at the 075
optimal point 07
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A-Method

The wiggle plot can be also built by weighting the positrons with their
asymmetry (function of the energy). High energy positrons weight more,
Increasing the sensitivity to the precession frequency signal. This also
allows to lower the energy threshold, hence the statistics increases.

» To obtain the asymmetry the Asymmetry
region from 500 MeV to 3100 -
MeV is sliced into bins of 40 R e
MeV N

* From each slice a wiggle plotis | '
oroduced o e

« Each wiggle plot is fitted to 02 T
extract the asymmetry F

. The fitis less precise near 1000 &«
MeV because Ais zero inthat ool e e e e
region. Energy [MeV]

$& Fermilab
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Weighted Wiggle Plot

Positron distribution where
each entry has been
multiplied by its asymmetry.

Note: the asymmetry below
1000 MeV is negative, here
the absolute value is plotted
for better visualization.

The wiggle plot is built
Integrating from 1100 MeV to
3000 MeV. The number of
entries increased from

3.6 x 10° to 4.5 x 10°
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Beam motion effects

In this experiment, effects of beam dynamics have direct impact on the
result. The most important one is the effect of coherent betatron
oscillations (CBO): the oscillation of the beam along the horizontal plane.

The fit is also sensitive to oscillations in the width of the beam in the
vertical plane (vertical waist) and of its mean.

The Fourier transform of the

residuals of the fit highlights

the frequencies of the beam

dynamics oscillations:

* frgo ~ 0.37 MHz

* feeoE Ja

* fyw ~2.3MHz

* fy ~25MHz

* Low frequency peak due
to lost muons
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Beam motion effects

Since the FFT residuals show peaks at beam dynamics frequencies, the
fitting function must be modified to include their contribution. This will also
improve the fit 2. The final function has 22 parameters. The effects
considered are the following, from the most to the least important:

CBO: the oscillation of the beam mean in the horizontal axis
Vertical waist: the oscillation of the beam width in the vertical axis

Lost muons: muons lost from the storage ring before they decay into
positrons.

Oscillation of the beam mean along the vertical axis
Second harmonic of the CBO

Oscillation in the value of g-2 asymmetry and phase due to CBO

$& Fermilab
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22 parameters fit function

The final function is the following:

t
Noe YT(1+ A, - Apo(£)cos(wat + @ + Ppo())) - Nepo(t) - Nyw (t) - Ny, (t) - Nycpo(t) - A(t)

t

Nego(t) =1+ Acgo cos(wepo (t) + depo) e VT t

NZCBO (t) =1+ AZCBOCOS(Z(UCBO (t) + ¢ZCBO)e_tZTCBO

NVW(t) =1+ AVWcOS((UV]/V(t)t + ¢VW)6_W
t

N,(t) =1+ Aycos(wy ()t + ¢py)e
t t’

to

These terms introduce more than 22 parameters, but some of them are not
independent: e.g. t,, = 27y, thus the number of independent parameters

ends up being 22.

$& Fermilab
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Fit procedure

The fit procedure uses several steps to include all the beam
dynamics parameters. This allows to use the result from each
step to initialize the fit parameters in the following one.

The procedure starts with the 5 parameters function, then
Includes:

« CBO terms (9 parameters)

« Vertical waist (12 parameters)

« Lost muons (13 parameters)

« Variable CBO terms (20 parameters)

« Higher order oscillations (22 parameters)

The fit is done using the y? minimization using the TMinuit2
package in ROOT.

$& Fermilab
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22 parameter fit results

With every beam motion effect
taken into account, the Fourier
Transform of the residuals
shows no peaks.

On the right a fitted Wiggle Plot
where the time axis is “wrapped
up” to help see the oscillation.

T-Method

A
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T and A methods comparison

The two methods give us these results:

R (ppm) 6R (ppm) X2/ndf X2/ndf
T-method -81.709 0.701 4297.19/4133 1,039
A-method -81.429 0.631 4364.88/4133 1,056

Agreement between the two methods is checked calculating the
difference

Which should be lower than the allowed statistical deviation (the 1o
difference due to different amount of statistic used by the two methods)

JSR% — 8R2 = 0.305

$& Fermilab
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T and A methods correlation

The two methods are not independent because part of the data is shared.
The correlation factor between the two methods is needed in order to
combine the results. To estimate it we generate many independent
measurements of R using the bootstrap method, summarized as it
follows:

« Starting from the pile-up corrected energy-time 2D histograms we
generate 2000 pseudoexperiments

« For each pseudoexperiment we build the wiggle plot using the T
method and the A method

« Each wiggle plot is fitted with the 22 parameters function

« The values of R obtained from the fit are used to calculate the
correlation factor

In some cases the fit didn’t properly converge, those points are
excluded from the calculation

$& Fermilab
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Counts

T and A methods correlation

The correlation between the §on TAcorsion=0772 :
two methods is r = 0.772 P, *
This is lower than the one

obtained in Runl, this
suggests that this method
may not be accurate enough

&
o
T | T | T ‘ T | T ‘ T

for this case.
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T and A methods correlation

Instead of building the pseudoexperiments from the energy-time 2D
histogram, we generate them from the 1D wiggle plot:

« Wefill every bin with a T-A corrlaton - 0533
number of entries that is
randomly extracted from a
Poisson distribution with
mean equal to the number of
entries of the original wiggle
plot.

 The error is calculated as:

entrieSbootsrap

=72

-74

R-Amethod [ppm]

=79 -78
R-Tmethod [ppm]

error, X -
0G entriespg

« This method also has the
advantage of greatly reduce
the computational time

With this method the correlation
factor is estimated to be r = 0.533,
even lower than before
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T and A method correlation

Another approach is to extract the entries from a Gaussian. The distribution
of the difference R(T) — R(A) highlights that some points have almost a fixed
difference. This effect could be due to the random number generator
algorithm. When points with a difference greater than 1 are excluded, the

correlation factor is r = 0.998.

The allowed statistical deviation is:

JOR(T)? + 6R(A)? — 2r6R(T)SR(A) = 0.081

R(T)-R(A)
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Summary

During my Internship at Fermilab:

1.

Learned about the goal and the specifics of the g-2
experiment.

Built a Wiggle Plot from a time-energy histogram.

3. Analyzed the data from Run2 using the T and A methods.

23

Learned about beam dynamics effects and their impact on
the measurement.

Studied the correlation between the T and A methods with
the bootstrap method.
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