
CMSSW IO Update
Brian Bockelman

Monday, July 30, 12

Chasing the Dream
• Most of the effort has been spent in commissioning CMSSW

on ROOT 5.34.

• New TTree code changes breaks pointer ownership rules.

• Changes to caching behavior (SetCacheRead causes a cache
flush; we do this before/after each TBranch::GetEntry).

• Still trying to commission prefetching.

• Note Xrootd client’s ReadV is not thread-safe. :(

• Have worked through reliability and CPU overhead
issues. Hope to start large-scale tests.

• ROOT I/O issues are currently holding up the CMS release.

Monday, July 30, 12

Performance
Regression Suite

• We’ve been working on putting together a simple performance
regression test suite.

• CMSSW module and configuration for reading any CMS file
according to predefined patterns. Examples:

• Read 5% of the file, using smallest branches.

• Read 10% of the file, using the largest branches.

• Read 20% of the file, using a combination of large and small
branches

• Read 10% of the file, using the smallest branches. Additionally,
read out 100% of the branches from 1% of the events.

Monday, July 30, 12

Regression Suite

• In general, we can:

• Read out X% of the branches (weighted by
size) for Y% of the events.

• Use different branch selection algorithms to
get to X%.

• Additionally, read out 100% of Z% of the
events. This is the “trigger pattern”.

• Realistic example: X=5, Y=100, Z=1.

Monday, July 30, 12

Statistics we want from
the tests

• We are looking for changes between
CMSSW versions in the following variables:

• Percentage of data read via vectored
interfaces.

• Total walltime.

• CPU / walltime

Monday, July 30, 12

Trigger Pattern
Optimization

• The “trigger pattern” is when a user reads branches
from an event based on the content of other branches.

• For example, the user may be filtering the file to
read out (“trigger on”) the complete contents of
events meeting certain criteria.

• This is a case where the TTreeCache performs
miserably.

• If there are 1,000 branches not used by the
TTreeCache, then this can be 1,000 round trips back
to the storage system. Performance killer.

Monday, July 30, 12

Trigger Optimization
• The optimization is simple: when we have a cache miss for an

event, read out the remaining active branches.

• The “active” branches are the set of all branches read during
the job’s lifetime.

• This is implemented via a specially-constructed TTreeCache;
manually trained, and set to only cache a single event.

• As with the normal TTreeCache, we keep a separate TTreeCache
to handle the first occurrence while the main cache is training.
The secondary cache will simply read out all branches for one
event.

• If you’re keeping count, we juggle up to 4 caches on the event
tree. Total of 9 caches per file.

Monday, July 30, 12

Trigger Optimization
• It seems that we are pushing the system to its limits.

• TTreeCaches were never designed to have multiple per tree. For
example, there are cache thrashing issues in 5.34.01 for Xrootd.
Unstable interfaces.

• There is surprisingly little information passed via TTree and the
TTreeCache; this results in us having to track branch usage via
separate hash maps. Since this is done externally, it is CMS-specific.

• My goal for next year is to have a large-scale re-engineering of our
approach to make it more maintainable and less fragile.

• Unless there’s a corresponding large-scale re-engineering of the
ROOT caching approach, the resulting system will likely be very
CMS-specific.

Monday, July 30, 12

Xrootd Improvements
• We’ve added the following:

• Scatter-gather vector IO (readv with non-
contiguous data buffers). Current ReadV interface is
insufficient do to our readv request coalescing;
resulted in some horrid low-performance work-
arounds.

• Allow client to set the unique identifier for the
monitoring stream (set to the CMS job ID).

• Warning: Xrootd has a nasty infinite loop bug we’ve
been unable to solve.

Monday, July 30, 12

HTTP Work
• We’ve worked a bit with the DPM folks to test out using

ROOT’s HTTP handler with CMSSW.

• Short story: performance is horrible to the point of
being broken.

• Probably just a few moderate bugs, but likely will take a
few months to get figured out at current effort levels.

• Given the CMS release schedule, I do not expect it
to be usable at large scale until late 2013.

• The CMSSW (non-ROOT) HTTP handler currently
works OK; in reality, it just forks off a “curl” process.

Monday, July 30, 12

Monitoring
Improvements

• The CMS job report now records the number of
events read from each branch. Will allow us track the
branch variability and content usage.

• Job report also records Xrootd statistics now we no
longer use TXNetFile.

• All file accesses using the AAA infrastructure have
about 20 different statistics recorded into the
accounting database.

• Includes: Filename, user, # readvs, # reads, volume of
readvs, volume of reads, number of chunks in readv.

Monday, July 30, 12

Putting it all together
• Our 2013 release will likely contain:

• The trigger optimization,

• Working prefetching,

• Improved Xrootd client.

• Better end-to-end job monitoring.

• It’ll be a great year! Hopefully, will knock off
enough things on our TODO list so we can start
thinking about long-term items.

Monday, July 30, 12

The Big Question

• Should we start from scratch?

• In terms of ROOT I/O, the plans for LS1
are pretty reserved.

• CMS will go multithreaded. I believe this
implies a large-scale redesign of this
system.

• The question is, “with or without
ROOT?”

Monday, July 30, 12

