

Tree Cache Learning
Or, What I Did this Summer

Jack Weinstein
Argonne National Laboratories

Normal Cache Behavior
● No Caching

● Each basket request is a separate file transaction
● Caching

● Cache misses are file transactions
● No cache fills until after learn phase

– Basket requests are separate file transactions while
learning

Motivation
● Current best for learn phase is N file

transactions for each of N branches used
● Can't make good guesses at branch usage
● Few large reads are less expensive than many

small reads
● A single large read is not much more expensive

than a single smaller read
● Latency is the dominating factor

● Goal: reduce file read calls for learn phase

Testing
● group.test.hc.NTUP_TOPJET
● ~4000 branches, flat NTuples
● “Large” clusters
● Rewritten

● Auto-flush 666 entries
● Baskets sorted by branch
● Baskets sorted by entry

Testing
● Files on NFS storage
● ROOT macro reads all entries of tree
● Reads a subset of branches
● Learn Entries left as default 100 (far below first

cluster boundary)

Changes already in ROOT Trunk
● Added TTreeCache::Enable() and Disable()

● Duplicate / extraneous calls to
TTreeCache::ReadBuffer

● TFile::fReadCache

● Extraneous cache clear / fill after learn phase

Learning Phase Strategies
● Large Initial Prefetch

– Large, single read
– Data from beginning of Tree

● Neighboring Data Prefetch
– On basket request, prefetch adjacent data on disk
– Exploit physical locality of related branches

● By baskets
– Add baskets similarly to cache fill

● By raw data blocks
– Read blocks from disk, basket or not
– On block request, check contained in read block

Prefetching by Baskets
● Iterate over baskets of tree branches, add to

cache
● Works well for cache fill – but not for the learn

phase, wide in branches and shallow in baskets
● Small cache compared to branches and cluster

concerning
● Too many fragmented reads
● Looks like: raw block size = cache size

● 20 branches (not random)
● Default basket arrangement
● Base (no changes)
● Large initial prefetch, selecting baskets

Large Initial Prefetch
as a Raw Block

● Read a large block of data from the beginning
of tree data

● No sorting, guaranteed single read
● Dealing with “nice” files. Trees are not

entangled on disk
● Block size compared to cluster

● Benefits from small initial cluster
● Possible to grab data beyond learn phase

Neighbor Data Prefetch
as a Raw Block

● During learn phase, before cache miss, grab
sequential block

● Exploit physical locality of related baskets
● Similar to TFile readahead

● Don't know next read, no gap to fill
● Smaller blocks are sufficient to reduce reads
● Read overhead increases with branches used

With More/Different Branches
● Greater number of random branches

● Read baskets get closer
● File read calls decrease more sharply

● Neighbor data prefetch makes more overhead
reads

Conclusions
● Neighbor Data Prefetch works well for small

block sizes
● Sharp decrease in read calls with block size

● Large Initial Prefetch works well for “large”
blocks compared to cluster size
● Constant overhead disk time for fixed block sizes
● Slower decrease in read calls

● Most cases, trade read calls for disk time

A0 A1 B0 C0 C1 C2

Request
For B0

Cluster on Disk

Cache Buffer

Sort,
Combine,
Read

ReadBuffer Overload

...

● TTreeCache::ReadBufferExtNormal
● Overloads TFileCacheRead::ReadBufferExtNormal
● Extends functionality

Afterthought
● It would be nice to be able to read data into the

cache without clearing the cache
● Recycle reads
● Would work well with neighboring data prefetch
● Could mix large initial prefetch with neighboring

data prefetch

A0 A1 B0 C0 C1 C2

Cluster on Disk

A0

C0

C1

A0?

C0
?

C0
?

Cache Buffer

= 1 read
total

= 2 reads
total

= 2 reads
total

Sort/Read

Sort/Read

Neighbor Data Prefetch
with Cache Modifications

● Don't clear cache (until after learn phase,
before cache fill)

● Don't throw away learn phase reads
● Overhead in bytes read is never more than the

cache size
● Larger decrease in disk reads
● Slight decrease in overall disk time for small

block sizes

