

Photon collector meeting 27/09/2022

Dichroic filters in Spain

J. Capó, <u>A. Cervera</u>, J. Martín-Albo, J. Ureña, N. Yahlali (IFIC-Valencia)

> C. Palomares (Ciemat)

P. Sánchez, D. García (UGR)

2nd iteration: Air optimization

- Completed, resulting in filters in the cold box, optimized for air with < 1.5% reflectance above cut-off at 45° AOI
- Those filters were not optimal but there was no time for another iteration for the cold box prototype

CIEMAT's measurements

Transmission above cutoff

- 25% efficiency loss in air when going from 1% to 3% transmission
- 15% in LAr (for simplified trans. curves)

AOI vs AOR

- Filters should be optimized for AOI=45° in LAr with cutoff at 400 nm
- At first order the filter cares about the AOR (angle of refraction) and not about the AOI (angle of incidence)
- The two setups below are expected to give similar results because the AOR is the same

3rd iteration: LAr Optimization

- **1. Different AOI:**
 - From Snell's law 45° in LAr corresponds to 61° in air. Cut-off moves left
 - ML structure needs to be changed to recover cutoff at 400 nm. Easy
- 2. Reflection loss at equivalent AOR:
 - because $n_1 = 1.24$ is closer to $n_2 \sim 1.7 \sim (effective n)$
 - small effect (next slides)
- 3. Larger dependence of cutoff position with AOI (θ_1)
 - because $n_1 = 1.24$ is closer to $n_2 \sim 1.7$
- 4. Reflexion loss at same AOI:
 - Same AOI corresponds to larger AOR in LAr
- Effects 3 & 4 could be solved using filter with larger refractive index (n₂)

Measurements in water

2.Reflexion loss at equivalent AOR

- We have done tests in water
- From Snell's law 45° in air corresponds to 32° water
- Similar behaviour above cutoff

ZOOM

2.Reflexion loss at equivalent AOR

- We have done tests in water
- From Snell's law 30° in air corresponds to 22° water
- Similar behaviour above cutoff

2.Reflexion loss at equivalent AOR

- We have done tests in water
- From Snell's law 70° in air corresponds to 45° water
- Similar behaviour above cutoff

3. Larger AOI cutoff dependence

The larger n1 the larger the shift

5% —> 4% drop in efficiency for ideal transmission curves

Could be solved increasing the effective refractive index of the filter

4. Reflexion loss at same AOI

- Average AOI from PTP is 45°. We want good performance at 45°
- 45° in LAr corresponds to 61° in air, which is worse than 45°

Could be solved either with more layers or increasing the effective refractive index of the filter

Other materials

- v1 & v2: ZrO2 (2.2) and SiO2 (1.46) used in previous two iterations
- Plan is to use materials with higher n
- Standard materials used by PE (see table below) do not have good transmission below 350 nm
- PE is investigating other materials

Material	Density g/cc	Melting Point ^o C	Refractive Index @ 550 nm	Transparency Range (μm)	e-beam performance
ZnS	4.1	1850	2.39	0.35 - 14.5	Good
SiO2	2.2	1700	1.46 V 2	0.2 - 9	Excellent
MgF2	3.18	1266	1.38	0.1 - 10	Excellent
ZnSe	5.27	1520	2.66	0.5 - 22	Good
TiO2 (rutile)	4.23	1830	2.65	0.36 - 9	Fair
ZrO2	5.89	2715	2.2 V 2	0.25 - 9	Good
Ta2O5	8.2	1872	2.16	0.35 - 9	Good

Material properties (Cf PhotonExport coating material catalog)

Conclusions about optimization

- Current filters are expected to give a poor efficiency in LAr
- PhotonExport is currently doing simulations for LAr
 - Studying materials with larger refractive index
 - Adding more layers
 - Expected results this week

Filter size and offers

LINE	ITEM	QUANTITY	PRICE €	TOTAL €
1	PR0376 Optical Filter	300	50,00€	15.000,00€
	Material FUSED SILICA JGS2 Surface size 100 mm x 100 mm x 1 mm incidence angle 45 ° 300-370nm T Average>80% 370-400 nm: Transmission band 400 - 500 nm: Reflection >97% Values are indicative and can vary +/- 1.5% the objective being to have a cutoff wavelength at 400 nm and the sharpest slope on the wavelength cut. Coating based on Zr02/Si02	2		
2	PR0376 Optical Filter	150	130,00€	19.500,00€
	Material FUSED SILICA JGS2 Surface size 150 mm x 150 mm x 1 mm incidence angle 45 ° 300-370nm T Average >80% 370-400 nm: Transmission band 400 - 500 nm: Reflection >97% Values are indicative and can vary +/- 1.5% the objective being to have a cutoff wavelength at 400 nm and the sharpest slope on the wavelength cut.	7		
2	BR0376 Optical Filter	75	285.006	21 275 006
	Material FUSED SILICA JGS2 Surface size 200 mm x 200 mm x 1,5 mm incidence angle 45 ° 300-370nm T Average>80% 370-400 nm: Transmission band 400 - 500 nm: Reflection >97% Values are indicative and can vary +/- 1.5% the objective being to have a cutoff wavelength at 400 nm and the sharpest slope on the wavelength cut.	/5	205,00€	21.373,00€
	Coating based on ZrO2/SiO2			

• Today they told me that the offer would include 98.5% minimum reflexion above cutoff, with 99% achievable

Proposed schedule

- 1st batch for installation in December (air optimization)
 - Option 1: reuse existing filters
 - Option 2: new small production of current filters
 - 5 weeks production
 - Ship to Campinas the first week of November
 - Coating in Campinas by end November
 - Ready to install in December
- 2nd batch for installation in February (LAr optimization)
 - Finalize simulations next week
 - Test production ready in early November
 - Characterisation done by mid November
 - 5 weeks production. Filters ready at the end of the year
 - Coating in Campinas in January
 - Ready to install in February

