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Overview

⬩ Northwestern creating AI simulators (semiclassical, quantum, 
adding LMT/finite pulse effects to each)

⬩ Also have beam propagation simulator for generating 
realistic aberrated beam profiles

⬩ SLAC augmenting simulations — making them differentiable 
to be able to fit input parameters

⬩ SLAC also considering how to speed things up with ML 
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Point source interferometry

⬩ PSI used to measure laser wavefront aberrations in situ

⬩ Semiclassical approximation is sufficient because PSI uses  
“hot” atom cloud

⬩ Current work toward using 3D reconstructed image to fit 
initial beam aberrations

╶ Parameterization of beam aberrations using Zernike polynomials and spatial 
frequencies
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Laser wavefront fitting

⬩ Update at beginning of August

⬩ Fitting wavefront via gradient descent 
with differentiable version of 
point-source interferometry simulator
╶ “Northwestern builds simulator, SLAC 

augments it + does ML”

⬩ Current focus: expand to more 
complicated wavefronts 
╶ Zernike polynomial parametrization: 

▹ Fit up to ∼40-50 parameters!

╶ If need more flexibility: maybe neural 
network

⬩ Other projects: incorporate a camera 
system, reduce fitting time
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Loss for 10 parameter fit. 
“Noise” due to batched training

Example Zernike wavefront

Sinusoid wavefront (last time)

Slide from Sean Gasiorowski

https://indico.fnal.gov/event/55696/


MAGIS science simulation

⬩ Want to capture quantum corrections, semiclassical limit 
might not be sufficient

⬩ Standard SE solver is the “split-step” method

╶ Separates linear and nonlinear parts of equation (applying 
Baker–Campbell–Hausdorff formula)

╶ Error from solving each separately is order dt2 — small step sizes

╶ Computationally expensive
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MAGIS science simulation with ML

⬩ Can make the numerical SE solver differentiable to fit input 
gravity gradient terms

⬩ If numerical solver is too slow, can generate a large amount 
of data once to train ML model to solve faster with new 
inputs

╶ PINNs (physics-informed neural networks)

╶ Other ML approaches use CNN/RNN architecture to solve PDEs directly
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Current numerical SE solver progress

⬩ Quantify agreement of 1D 
version with analytical result

⬩ Next steps:
╶ 3D version
╶ Check clock mode
╶ Evaluate speed/step size needed 

when using physical parameters 
(currently ħ=1, etc.)

╶ Determine best scheme for 
pulsing (separate pulse evolution 
or integrated into split-step)

╶ Add finite pulses / LMT
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Illustrative example of split step result in Bragg mode



Next steps

⬩ Incorporate finite pulse and LMT to PSI differentiable 
simulation

⬩ Generalize split-step solver to 3D

⬩ Add finite pulse and LMT to split-step

⬩ Benchmark split-step simulation 

╶ Is the numerical solver too computationally expensive to use for simulating a 
large amount of data?
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Other open questions

⬩ Will ML methods meet precision requirements for full 
MAGIS-100 simulation?

⬩ Generally, what are our requirements as far as speed for both 
the PSI simulation and MAGIS science run simulation?

⬩ What functionality is desired from the simulators? 

╶ Add predefined time-dependent gravity gradient signal

╶ What else??
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