New Results on Low-Energy Inelastic Neutrino-Nucleus Scattering from COHERENT

Samuel Hedges

Fermilab Joint Experimental-Theory Physics Seminar December 9th, 2022

Samuel Hedges, LLNL

Fermilab JETP Seminar – December 9th, 2022

Outline

- Motivation for studying low energy neutrino-nucleus interactions
- The COHERENT collaboration & neutrino production at the SNS
- The lead neutrino cube—neutrino-induced neutrons on lead
- The NalvE-185 detector—inclusive electron-neutrino charged-current measurement on ¹²⁷I
- Ongoing efforts and future inelastic COHERENT measurements

Motivation for Studying Low Energy Neutrino-Nucleus Interactions

Fermilab JETP Seminar – December 9th, 2022

Low-Energy Neutrino-Nucleus Interactions

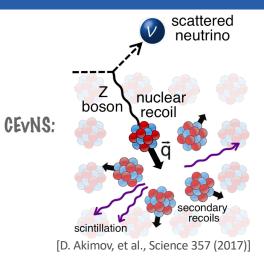
- Many sources produce exclusively low energy (< 100 MeV) neutrinos
- Neutrinos reveal key information about processes generating them
 - Sources can be used to study fundamental properties of neutrino
 - Cross sections are small
- Typical detectors use large amounts of water, liquid or plastic scintillator
 - Rely on neutrino-electron scattering or inverse- β decay
- An alternate channel is neutrinonucleus interactions
 - Larger cross sections, lower thresholds, denser targets, different detector technologies

10 e⁻ in mb) 10-4 SuperNov 10-7 2 Reactor **10**⁻¹⁰ 'u Accelerator Section (</br>

0
10⁻¹³

10⁻¹⁶
(

10⁻¹⁹
10⁻¹⁹ Terrestrial Cosmic **Atmospheric** Solar Cross ! 10-22 IceCube IceCube/PINGU ANTARES PINGU 10⁻²⁵ ANITA INO/ICAL Hyper-H **Big Bang** 10-28 10-3 10⁸ 10¹⁰ 10-2 10² 10⁴ 10⁶ 10¹² 10¹⁴ 10¹⁶ 10¹⁸ 10-4 1 Neutrino Energy (eV)

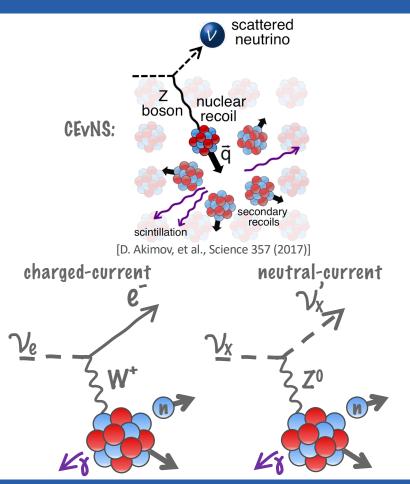

100 MeV

[A. de Gouvea, et al., arxiv:12104340 (2013)] [J. A. Formaggio & G. P. Zeller, Rev. Mod. Phys **84** (2012)]

Neutrino-Nucleus Interactions

- Coherent elastic neutrino-nucleus scattering (CEvNS)
 - Mediated by Z^0
 - Large cross section ($\propto N^2$), ~threshold-less
 - Nucleus in same state before & after interaction (no particles emitted)
 - Only signature is low-energy nuclear recoil
 - Momentum transfer comparable to size of nucleus

 $qR \leq 1$



Neutrino-Nucleus Interactions

- Coherent elastic neutrino-nucleus scattering (CEvNS)
 - Mediated by Z^0
 - Large cross section ($\propto N^2$), ~threshold-less
 - Nucleus in same state before & after interaction (no particles emitted)
 - Only signature is low-energy nuclear recoil
 - Momentum transfer comparable to size of nucleus

 $qR \leq 1$

- Inelastic charged-current (CC) and neutral-current (NC) scattering
 - Mediated by W^{\pm} , Z^0
 - Cross section, threshold varies with different nuclei
 - Nucleus emits secondary particles (protons, neutrons, gammas, ...) as a result of interaction
 - Focus of this talk

Existing Low-Energy Neutrino-Nucleus Measurements

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
² H	$^2\mathrm{H}(u_e,e^-)\mathrm{pp}$	Stopped π/μ	LAMPF	$52 \pm 18(\text{tot})$	54 (IA) (Tatara et al., 1990)
¹² C	$^{12}{ m C}(u_e,e^-)^{12}{ m N}_{ m g.s.}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5 ({ m stat}) \pm 0.8 ({ m sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita et al., 1988).
		Stopped π/μ	LSND	$8.9\pm0.3(\mathrm{stat})\pm0.9(\mathrm{sys})$	8.9 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	$^{12}{ m C}(u_e,e^-)^{12}{ m N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6(\text{stat}) \pm 0.5(\text{sys})$	5.4-5.6 [CRPA] (Kolbe <i>et al.</i> , 1999b)
		Stopped π/μ	E225	$3.6 \pm 2.0(\text{tot})$	4.1 [Shell] (Hayes and S, 2000)
		,.	LSND	$4.3 \pm 0.4 ({ m stat}) \pm 0.6 ({ m sys})$	
	$^{12}{ m C}(u_{\mu}, u_{\mu})^{12}{ m C}^{*}$	Stopped π/μ	KARMEN	$3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys})$	2.8 [CRPA] (Kolbe et al., 1999b)
	$^{12}C(\nu,\nu)^{12}C^{*}$,.	KARMEN		10.5 [CRPA] (Kolbe et al., 1999b)
	$^{12}\mathrm{C}(u_{\mu},\mu^{-})\mathrm{X}$	Decay in Flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750-1780 [CRPA] (Kolbe <i>et al.</i> , 1999b) 1380 [Shell] (Hayes and S, 2000) 1115 [Green's Function] (Meucci <i>et al.</i> , 2004)
	$^{12}{ m C}(u_{\mu},\mu^{-})^{12}{ m N}_{ m g.s.}$	Decay in Flight	LSND	$56 \pm 8(\mathrm{stat}) \pm 10(\mathrm{sys})$	68-73 [CRPA] (Kolbe <i>et al.</i> , 1999b) 56 [Shell] (Hayes and S, 2000)
⁵⁶ Fe	$^{56}\mathrm{Fe}(u_e,e^-)^{56}\mathrm{Co}$	Stopped π/μ	KARMEN	$256\pm108(\mathrm{stat})\pm43(\mathrm{sys})$	264 [Shell] (Kolbe <i>et al.</i> , 1999a)
⁷¹ Ga	$^{71}\mathrm{Ga}(u_e,e^-)^{71}\mathrm{Ge}$	⁵¹ Cr source	GALLEX, ave.	$0.0054 \pm 0.0009(tot)$	0.0058 [Shell] (Haxton, 1998)
		^{51}Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006 ({\rm tot})$	0.0070 [Shell] (Bahcall, 1997)
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LSND	$284 \pm 91 (\mathrm{stat}) \pm 25 (\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

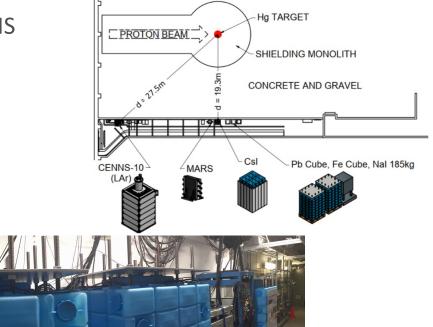
List of <300 MeV neutrino-nucleus measurements with terrestrial sources

[J. A. Formaggio & G. P. Zeller, Rev. Mod. Phys 84 (2012)]

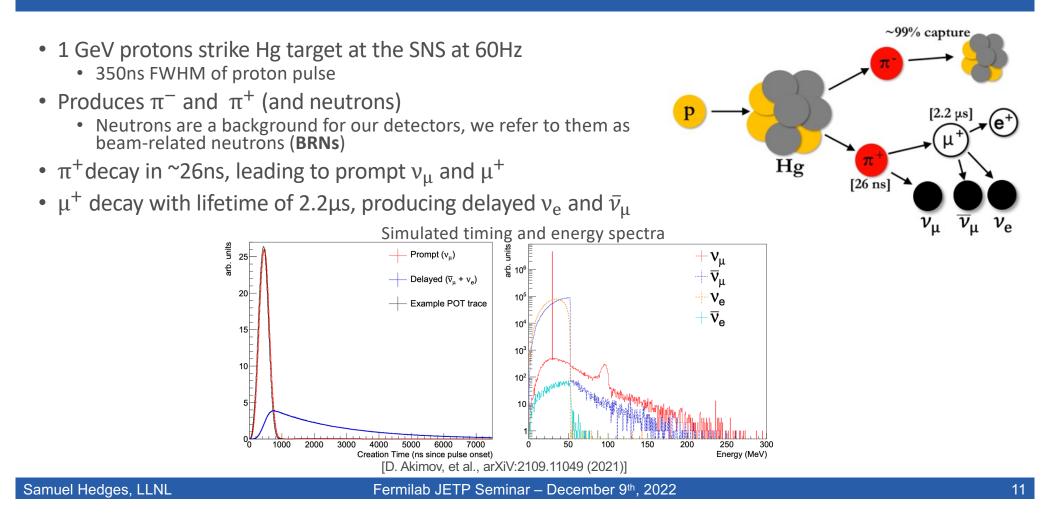
Fermilab JETP Seminar – December 9th, 2022

The COHERENT Collaboration & Neutrino Production at the SNS

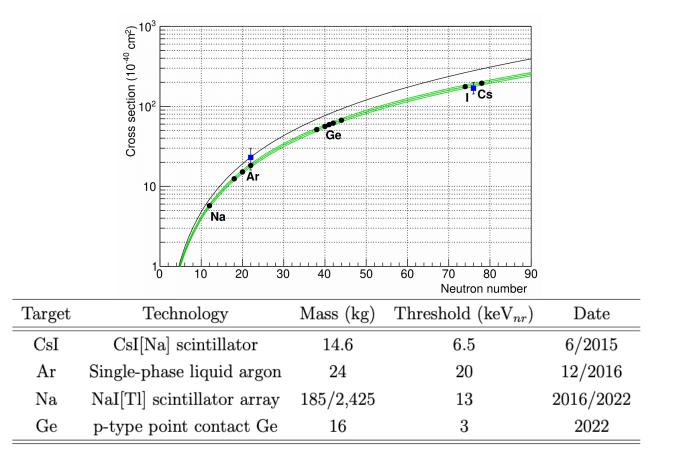
Fermilab JETP Seminar – December 9th, 2022


The COHERENT Collaboration

- ~80 members, 20 institutions
- Formed to observe CEvNS, study physics in multiple targets, including N² scaling of cross section
- Use neutrinos produced by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL)
- Intense flux of low-energy pulsed neutrinos useful for studying inelastic neutrino-nucleus interactions as well


Neutrino Alley

- COHERENT's detectors in "Neutrino Alley" at the SNS
 - 25m long hallway, 20-30m from target
 - Not designed for neutrino detectors
 - Concrete and gravel reduce beam neutrons
- Dedicated detectors for measuring neutrons
- Take advantage of timing structure of neutrinos produced at the SNS



Neutrinos at the SNS

COHERENT's CEvNS Detectors

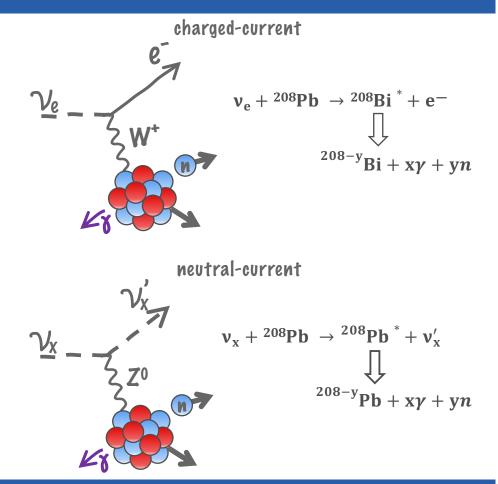
COHERENT's Inelastic Detectors

- = existing measurements for low-energy (<300 MeV) neutrinos from terrestrial sources
- = COHERENT's current & planned detectors

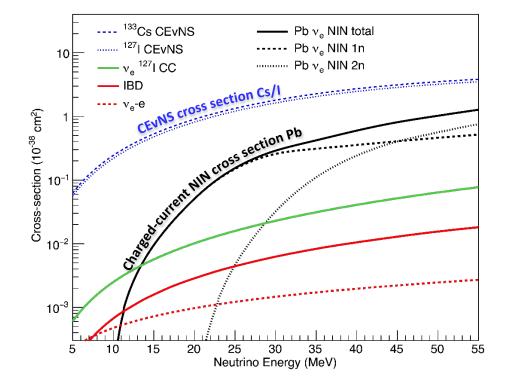
IA IA																	18 VIIIA
1 Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium
3 Lithium 6.94	4 Beryflium 8.012/831											5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Crysgen 15.999	9 Fluorine 18.998403163	10 Ne Neon 201797
11 Na Sodium 22.98970928	¹² Mg Magnesium 24.305	3 111B	4 IVВ	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.9815345	I4 Silicon 28.085	Phosphorus	16 S Sulfur 32.06	17 Cl Chlorine 35.45	Angon 23.948
¹⁹ K	°Ca	Sc	²² Ti	²³ V	°⁴Cr	²⁵ Mn	Fe	Co	²⁸ Ni	°°Cu	[®] Zn	Ga	Ge	³³ As	ืSe	³⁵ Br	^³ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 78.904	Krypton 83.798
³⁷ Rb	°sr	³⁹ Y	^{∗°} Zr	^⁴ Nb	Mo	⁴³ Tc	ืRu	^⁵ Rh	^{**} Pd	⁷ Ag	^{4®} Cd	็In	ຶSn	ືSb	⁵²Te	53	ິັXe
Rubidium 85.4678	Strontium 8762	Yttrium 88.90584	Zirconium 91224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121,760	Tellurium 127.60	lodine 126.90447	Xenon 131,293
^{ະວ} ິCs	°Ba	57 - 71 Lanthanoids	⁷² Hf	⁻³Та	⁷⁴ W	Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	в	⁸¹ TI	Pb	Bi	°₽o	[®] At	[®] Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
[®] Fr	Ra	89 - 103 Actinoids	[™] Rf	¹⁰⁵ Db	[™] Sg	[™] Bh	Hs	Mt	Ds	Rg	Cn	Nh	¹¹⁴ FI	Mc	Lv	Ts	[™] Og
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (209)	Bohrium (270)	Hassium (209)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

57 La Lanthanum 138.90547	Cerium H0316	59 Pr Praseodymium 140.90766	Neodymium	Promethium	62 Sm Samarium 150.36	63 Eu Europium 151,964	G4 Gadolinium 157.25	65 Tb Terbium 158.92535	Dysprosium	67 Ho Holmium 164,93033	68 Erbium 197259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	Lutetium
ືAc	ືTh	Pa	⁹² U	°ир	ืPu	۳Åm	ст	[®] Bk	^ѷ Cf	^{°°} Es	⊮̃Fm	™Md	No	Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

Name	Target	Channel	Deployment Date	
Lead Neutrino Cube	Lead	$Pb(\nu_e, e^- + xn)$	1/2016	
Iron Neutrino Cube	Iron	$\operatorname{Fe}(\nu_e, e^- + xn)$	2/2017 Results presented to	day!
NaI ν E (COH-NaI-185)	$^{127}\mathrm{I}$	$^{127}\mathrm{I}(\nu_e, e^- + x)$	6/2016	
CENNS-10 (COH-Ar-10)	Argon	$\operatorname{Ar}(\nu_e, e^- + x)$	2017	
uThor	Thorium	$\operatorname{Th}(\nu_e, e^- + x)$	2022	
CENNS-750 (COH-Ar-750)	Argon	$\operatorname{Ar}(\nu_e, e^- + x)$	future	
D_2O	$^{2}\mathrm{H/O}$	$^{2}\mathrm{H/O}(\nu_{e},e^{-}+x)$	future	

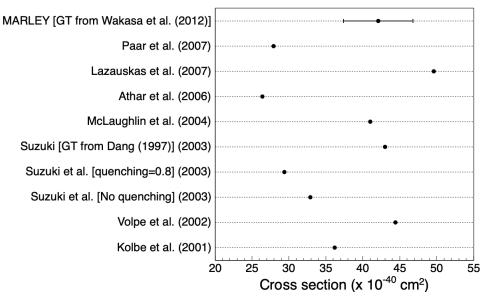

Samuel Hedges, LLNL

Fermilab JETP Seminar – December 9th, 2022


The Lead Neutrino Cube

Fermilab JETP Seminar – December 9th, 2022

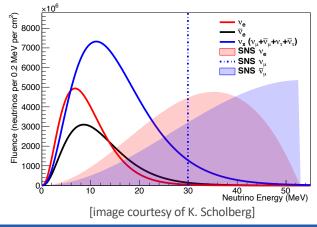
- Neutrino interactions in shielding of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors



- Neutrino interactions in shielding of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than CEvNS, but previously unmeasured

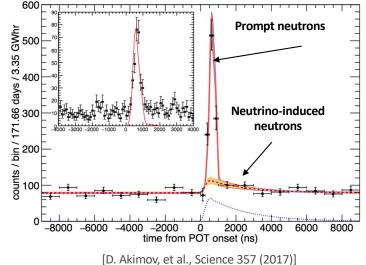
- Neutrino interactions in shielding of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than CEvNS, but previously unmeasured
 - Variations in calculations

Inclusive ²⁰⁸Pb Flux-Averaged DAR Cross Sections


- Neutrino interactions in shielding of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than CEvNS, but previously unmeasured
 - Variations in calculations
 - Much greater mass of shielding than CEvNS detectors themselves

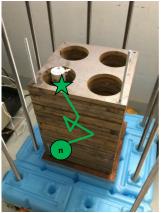
CEvNS Target	Shielding
14.6 kg CsI[Na]	2,200 kg lead
24 kg liquid argon	11,000 kg lead
16 kg Ge	3,400 kg lead
2,425 kg Nal	17,000 kg iron and lead

- Neutrino interactions in shielding of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than CEvNS, but previously unmeasured
 - Variations in calculations
 - Much greater mass of shielding than CEvNS detectors themselves
- Primary mechanism for HALO to detect supernova neutrinos


[https://www.triumf.ca/research-highlights/experimental-result/halo-operational-snolab]

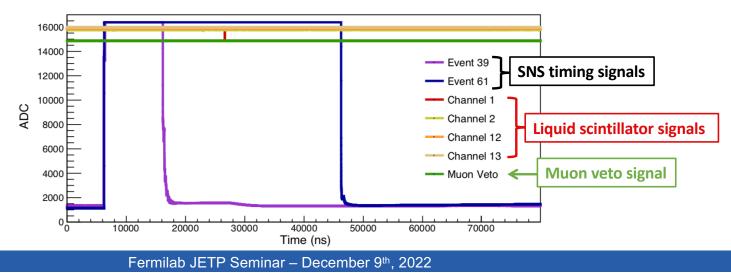
Initial Attempt—Eljen Cell Detector

- In 2015, prior to deployment of CsI[Na] CEvNS detector, two 1.5-L liquid scintillators deployed inside its shielding
 - 2,200kg of Pb shielding ~20m from target
 - Exposure of 171.7 days (3.35 GWhr)
 - Threshold of 30 keVee
- Best fit of non-zero NIN component at 2.9 σ
 - 0.97 ± 0.33 neutrons produced/GWhr/kg of Pb
 - ~1.7x lower than predicted in McLaughlin, G.C. Phys. Rev. C 70 4 (2004)
- Not a major background for CEvNS in CsI
 - With additional HDPE shielding added inside lead, ~47x lower than CEvNS signal!



The Lead Neutrino Cube

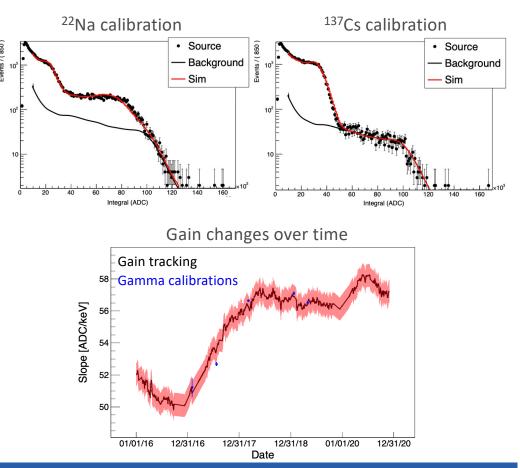
- Two dedicated NIN detectors at SNS
 - 900-kg Pb—deployed in 2015
 - 700-kg Fe—deployed in 2017
- NINs produced in lead/iron have small but non-zero efficiency to make their way to LS cells, identified as neutrons using PSD
- Muon veto panels surround targets to reject muon-induced neutrons
- Water shielding reduces steady-state, beam-related neutrons
- Focus on delayed neutrino window, CC cross section expected to be larger than NC, free of prompt beam-related neutron (BRN) background


LS detectors Pb target

Muon veto panels Water shielding

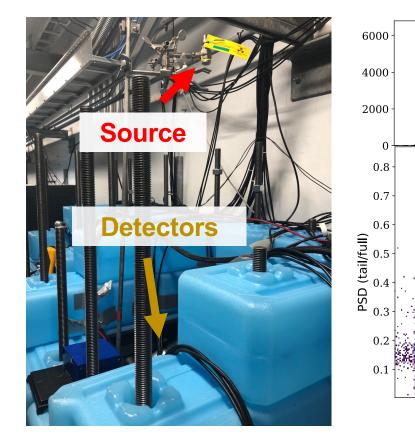
Data Acquisition Scheme

- DAQ record coincidences between SNS timing signals and internal triggers within 20µs window, record all channels
- Waveform reconstruction code:
 - Filter waveforms to remove long-timescale oscillations in baseline
 - Identify pulses, integrate for energy and PSD parameter
 - · Hold-off time to remove electronic ringing artifacts
 - In software, correlate LS pulses with vetoes, SNS timing pulses
- Events within a 14µs window around the SNS timing signal blinded

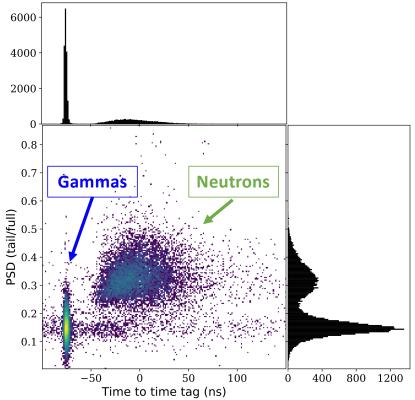


Samuel Hedges, LLNL

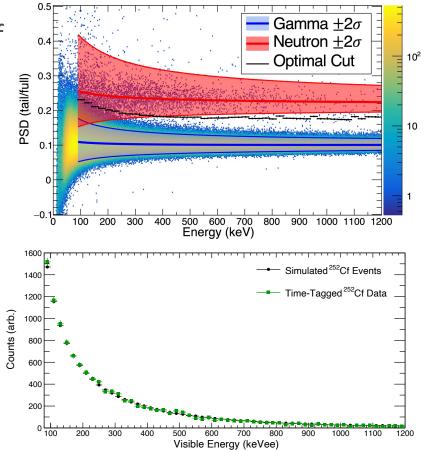
22


Gamma Calibrations

- Calibrations performed with gammas source (²²Na, ¹³⁷Cs, ¹³³Ba, ⁶⁰Co) several times throughout detector operations
- Source and detector simulated in MCNP, fit to data allowing energyresolution and ADC-to-keV calibration parameters to float
- Between calibrations, background spectrum fit (largely due to ⁴⁰K) to track gain on shorter time scales


Neutron Calibrations

- *in-situ* run performed with time-tagged ²⁵²Cf neutron source
- Time-tagged signal replaced SNS timing signal in DAQ, shielding removed to expose detectors to source, otherwise identical to running configuration

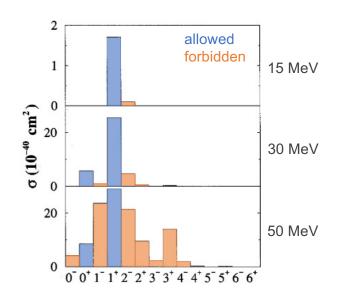

Neutron Calibrations

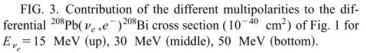
- *in-situ* run performed with time-tagged ²⁵²Cf neutron source
- Time-tagged signal replaced SNS timing signal in DAQ, shielding removed to expose detectors to source, otherwise identical to running configuration
- Produced clean population of gammas, neutrons for understanding thresholds, optimizing PSD parameter

Neutron Calibrations

- *in-situ* run performed with time-tagged ²⁵²Cf neutron source
- Time-tagged signal replaced SNS timing signal in DAQ, shielding removed to expose detectors to source, otherwise identical to running configuration
- Produced clean population of gammas, neutrons for understanding thresholds, optimizing PSD parameter
- Develop neutron PSD cut
- Compare data to simulation to ensure we understand energy response




MARLEY


- Used MARLEY* to generate signal predictions for inelastic neutrino-nucleus interactions at the SNS
- Model of Argon Reaction Low Energy Yields originally designed for ⁴⁰Ar, but can be used with other nuclei
- Handles allowed components of inelastic neutrinonucleus reactions at low energies
 - Forbidden transitions play larger role at higher energies

$$\frac{d\sigma}{d\mathrm{cos}\theta_{\ell}} = \frac{G_F^2 |U_{ud}|^2}{2\pi} F_C \left[\frac{E_i E_f}{s}\right] E_{\ell} |\vec{p_{\ell}}| \left[\left(1 + \beta_{\ell} \mathrm{cos}\theta_{\ell}\right) B(F_-) + \left(1 - \frac{1}{3}\beta_{\ell} \mathrm{cos}\theta_{\ell}\right) B(GT_-) \right]$$

- Inputs are Gamow-Teller strength distributions
 - Calculate theoretically or measure via charge-exchange reactions–(p,n) or (³He,t)

[C. Volpe, et al., Phys. Rev. C 65 (2002)]

MARLEY for ²⁰⁸Pb

- Gamow-Teller strengths obtained from (p,n) measurement
 - Input B(GT⁻) and B(F) values into MARLEY along with electron neutrino DAR spectrum

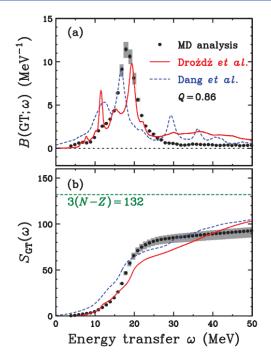
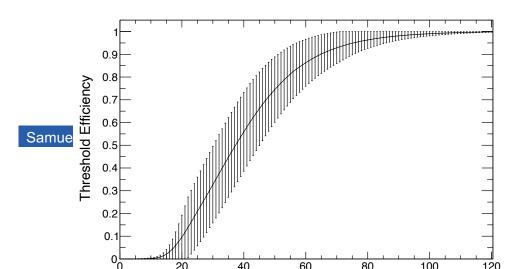
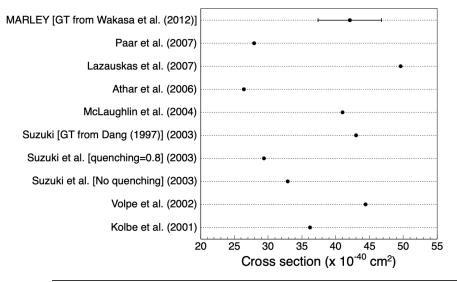



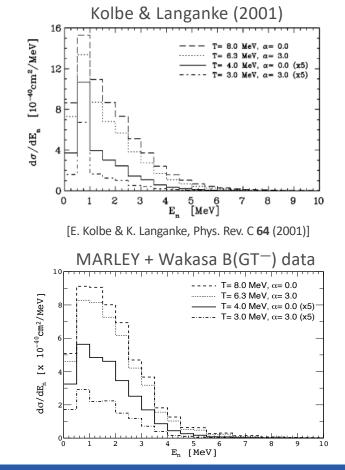
FIG. 16. (Color online) (a) The GT strength $B(\text{GT}; \omega)$ and (b) its integrated $S_{\text{GT}}(\omega)$ distributions obtained by MD analysis of the ²⁰⁸Pb(p, n) reaction. The bands represent the uncertainties arising from the selection of α in Eq. (18). The solid and dashed curves are the theoretical predictions reported by Drożdż *et al.* [18] and Dang *et al.* [62], respectively, with a quenching factor Q = 0.86 [13].


[T. Wakasa, et al., Phys Rev. C 85 (2012)]

MARLEY for ²⁰⁸Pb

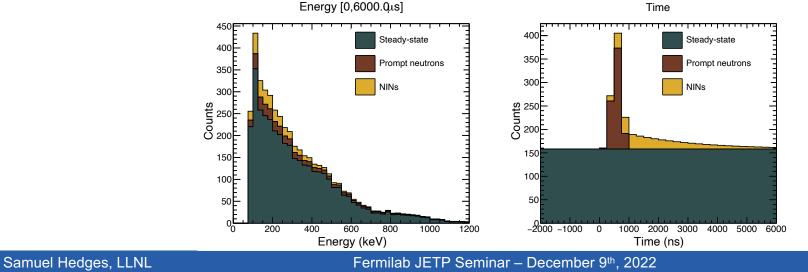
- Gamow-Teller strengths obtained from (p,n) measurement
 - Input B(GT⁻) and B(F) values into MARLEY along with electron neutrino DAR spectrum
- MARLEY outputs cross sections, energies and multiplicities of emitted particles
 - Cross section for lead agrees well with existing theoretical calculations
 - Provides calculations for specific channels

Inclusive ²⁰⁸Pb Flux-Averaged DAR Cross Sections


Channel	Cross section $(\times 10^{-40} \text{cm}^2)$
$\frac{208}{\text{Pb}}(\nu_e, X)$	42.1
208 Pb $(\nu_e, e^- + n)^{207}$ Bi	31.6
208 Pb $(\nu_e, e^- + 2n)^{206}$ Bi	7.7
208 Pb $(\nu_e, e^- + 3n)^{205}$ Bi	0.4

December 9th, 2022

29

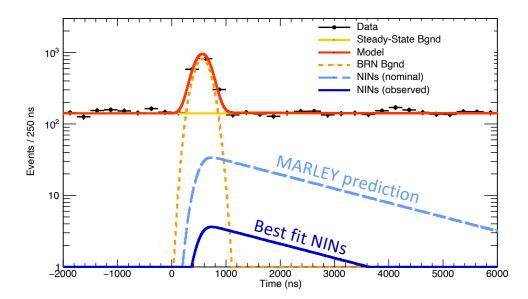

MARLEY for ²⁰⁸Pb

- Gamow-Teller strengths obtained from (p,n) measurement
 - Input B(GT⁻⁻) and B(F) values into MARLEY along with electron neutrino DAR spectrum
- MARLEY outputs cross sections, energies and multiplicities of emitted particles
 - Cross section for lead agrees well with existing theoretical calculations
 - Provides calculations for specific channels
- Similar neutron energy spectrum as E.
 Kolbe & K. Langanke, Phys. Rev. C 64 (2001) for supernova neutrinos
 - No published neutron spectrum from DAR neutrinos w/o MARLEY

PDFs

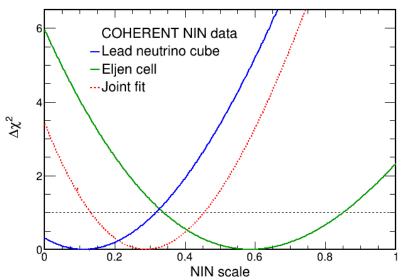
- MARLEY events simulated in MCNP, GEANT4 to determine efficiency for NINs arriving in detector of 18.8%
- Apply measured trigger threshold, energy resolution, PSD cut, to arrive at an efficiency of detecting NINs of 3.3%
- One-dimensional (time-only) fit to data
- Using MARLEY's predictions, expect 346 charged-current NIN events with cuts
 - Approx. 5 σ significance with nominal cross section

31


Uncertainties

- Largest source of uncertainty (10%) due to uncertainty in neutrino flux
 - D₂O detector being deployed to SNS to measure flux via the electron neutrino charged-current cross section on ²H
 - 2-3% theoretical uncertainty
- Second largest uncertainty due to quenching factor of nuclear recoils in EJ-301 liquid scintillator
 - Members of collaboration measured this at low recoil energies at TUNL

Source	NIN uncertainty (%)
Neutrino flux	± 10
Quenching factor	± 2.7
Software threshold	+0.2 / -0.4
PSD selection	± 1.0
Calibration	+2.1 / -2.2
Energy resolution	+1.7 / -0.5
Muon veto	+0.4 / -0.3
Lead target mass	± 0.6
MARLEY NC prediction	+0/-1.6
Total:	+10.8 / -10.8


Unblinded Results

- Best fit of 36⁺⁷²₋₃₆ events compared to expected 346 events
 - Cross section lower than expected
- Post-unblinding checks:
 - Purity of lead target—stamped as >99.99% pure, density consistent with lead
 - Detector sensitivity to neutrons over lifetime—BRNs compared to delivered beam power show excellent agreement
 - PSD cut extended to lower energies where uncertainties more difficult to quantify due to presence of Cherenkov events increased number of events, but suppression of cross section still observed

Combined Fit with Eljen Cell Data

- Data from Eljen-cell detector reanalyzed
 - Used MARLEY framework for generating predictions
 - Allowed additional smearing term for BRN timing due to dispersion effects (included in lead neutrino cube fit)
 - Improved predictions for neutrino flux based on beam power and energy (D. Akimov, et al., arXiV:2109.11049 (2021))
- Combined fit yields MARLEY cross section suppressed by a factor of $0.29^{+0.17}_{-0.17}$
 - 1.8 σ significance, >4 σ disagreement with MARLEY model
- Open questions:
 - Is neutron emission channel suppressed?
 - Study inclusive lead charged-current cross section
 - Can do within COHERENT, also external plans (arXiv:2205.11769)
 - Are emitted neutrons lower in energy than predicted?
 - Study lead NIN cross section with capture-gated detector
 - Is the NIN cross section suppressed for other targets?
 - Study NIN cross section with different target (Fe neutrino cube)

The NalvE-185 Detector

Fermilab JETP Seminar – December 9th, 2022

Motivation for Measuring ¹²⁷I CC Interactions

 Initial motivation from W. C. Haxton, Phys. Rev. Lett 60 (1988), proposing radiochemical experiment using ¹²⁷I for solar neutrino detection

 ν_e + ¹²⁷I \rightarrow e^- + ¹²⁷Xe^{*}

- Low threshold gives access to ⁷Be solar neutrinos, larger cross section than for ³⁷Cl
- Resulting ¹²⁷Xe has long half-life, use similar radiochemical technique as used for ³⁷Cl
- Engel, et al. pointed out the cross section depends on g_A
 - Suppression of g_A important for interpreting $0\nu\beta\beta$ matrix elements, half-lives
 - Can potentially test quenching at momentum transfer not available through beta-decay experiments

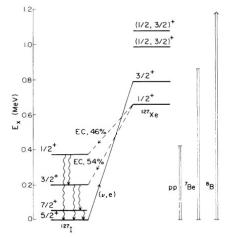
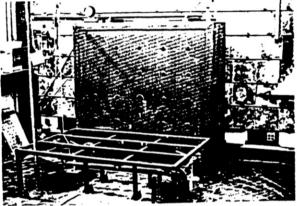
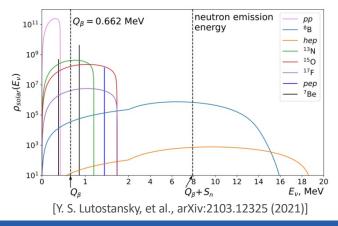


FIG. 1. Level scheme showing weak transitions between $^{127}\mathrm{I}$ and $^{127}\mathrm{Xe.}$

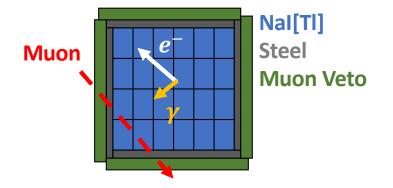

[W. C. Haxton, Phys. Rev. Lett 60 (1988)]

J^{π}	$g_A = -1.0$	$g_A = -1.26$
0+	0.096	0.096
0^{-}	0.00001	0.00002
1+	1.017	1.528
1^{-}	0.006	0.008
2^{+}	0.155	0.213
2^{-}	0.693	1.055
3^{+}	0.149	0.171
3-	0.017	0.025
otal	2.098	3.096


[J. Engel, S. Pittel, & P. Vogel, Phys. Rev. C 50 (1994)]

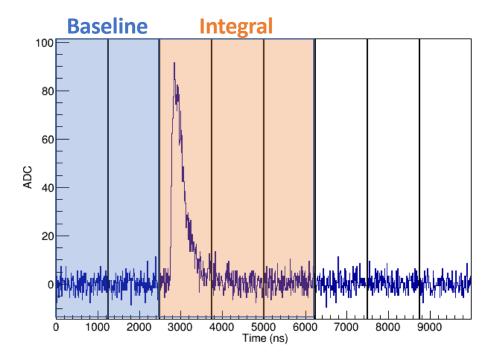
Motivation for Measuring ¹²⁷I CC Interactions

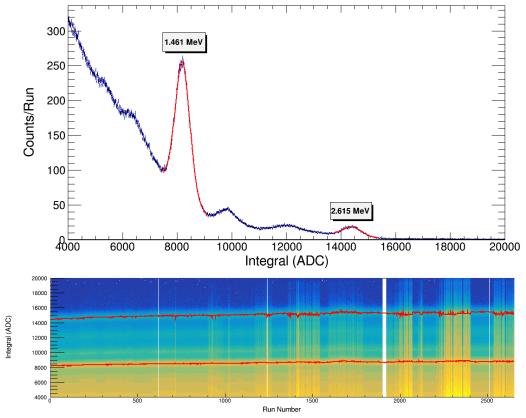
- Exclusive cross section to ¹²⁷Xe_{bound} measured at LAMPF in the 1990s with radiochemical approach
- Reported flux-averaged cross section of
- $\sigma = 2.84 \pm 0.91 (stat) \pm 0.25 (sys) \times 10^{\text{-40}} \, \text{cm}^2$
 - Only measured cross section to bound states of ¹²⁷Xe—majority of neutrinos at DAR sources have energy above neutron emission threshold
- Suggested repetition with electronic Nal detector to measure energy-dependence of cross section
- Recently interest in looking at ¹²⁶Xe/¹²⁷Xe ratio for comparing ⁷Be to ⁸B/HEP neutrinos



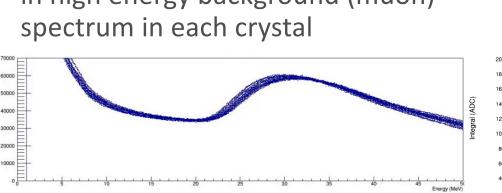
[B. T. Cleveland, et al., 23rd Int. Cosmic Ray Conf. 3 (1993]

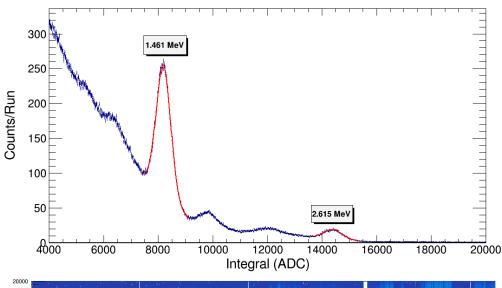
NalvE-185 Detector

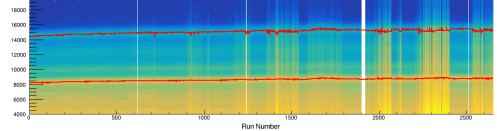

- Nal neutrino Experiment (NalvE) designed to measure the inclusive charged-current cross section, energy-dependence
- Twenty-four 7.7-kg NaI[TI] scintillator detectors (185-kg mass), deployed 2016
- Signal is "large-energy" (10-55 MeV) depositions in delayed neutrino window
- Muon veto panels to reduce cosmic muons
- 1.5" steel between Nal and veto panels to avoid vetoing signal
- Detector also used as prototype for ton-scale Nal CEvNS detector


Data Acquisition System

- Detector uses digitizer trigger to record scintillation in any NaI channel above a threshold (500-900 keV)
- Integrated PMT charge recorded in eight timing windows (accumulators) around the pulse to determine baseline, integral
- Muon veto panels, SNS timing pulses trigger independently, timing correlation done in software
 - Data within -2µs to +20µs of SNS timing signal blinded

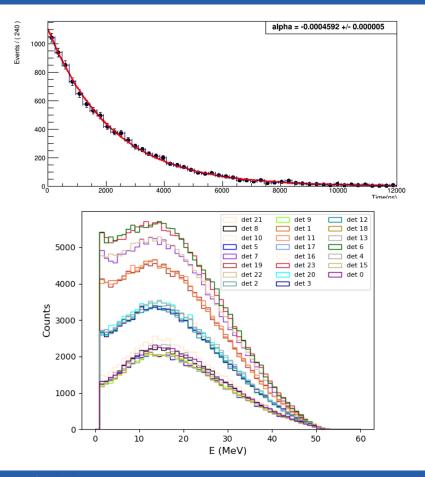

Intrinsic Background Calibrations


- Calibrate each Nal channel based on ⁴⁰K and ²⁰⁸Tl intrinsic backgrounds
 - Track gain changes over time, measure energy resolution in crystals



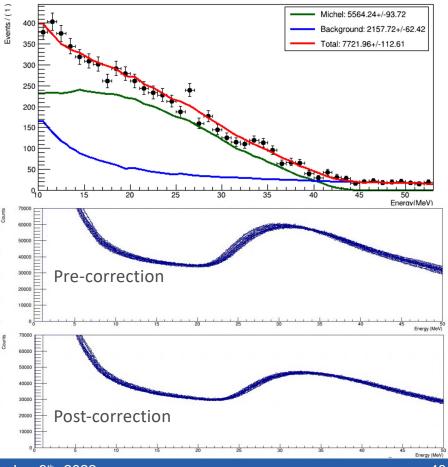
Intrinsic Background Calibrations

- Calibrate each Nal channel based on ⁴⁰K and ²⁰⁸Tl intrinsic backgrounds
 - Track gain changes over time, measure energy resolution in crystals
- Extending calibration to higherenergies leads to small discrepancies in high energy background (muon) spectrum in each crystal

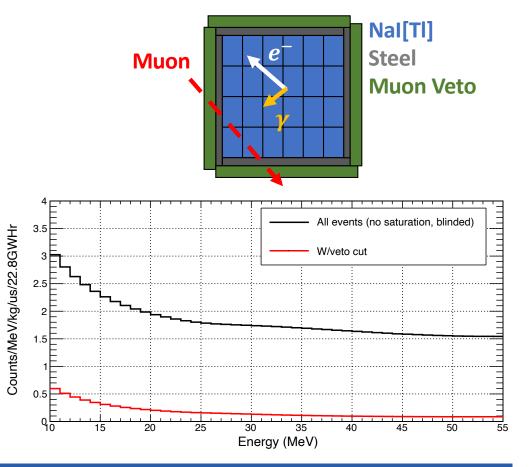


Samuel Hedges, LLNL

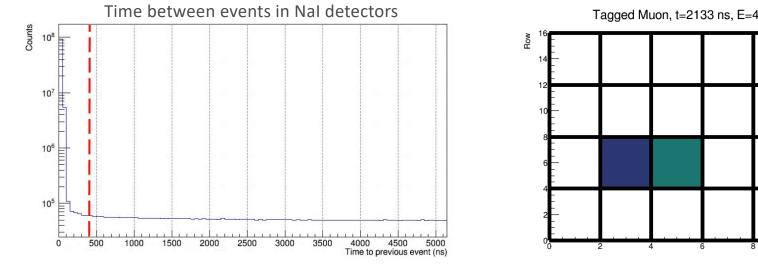
Fermilab JETP Seminar – December 9th, 2022


Michel Positron Correction

- Use Michel positrons to correct calibration
- Collect population of Michel events by looking for large energy depositions in crystals after a muon event (tagged with veto panels)
 - Fitting data gives anti-muon mean lifetime of $2.172 \pm 0.024 \mu s$
- Simulate positrons in GEANT4, matching data selection criteria
- Fit quadratic calibration function to data that preserves low energy calibrations


Michel Positron Correction

- Use Michel positrons to correct calibration
- Collect population of Michel events by looking for large energy depositions in crystals after a muon event (tagged with veto panels)
 - Fitting data gives anti-muon mean lifetime of $2.172 \pm 0.024 \mu s$
- Simulate positrons in GEANT4, matching data selection criteria
- Fit quadratic calibration function to data that preserves low energy calibrations


Muon Veto Cut


- Cosmic muons the largest source of backgrounds for charged-current signal
- Tag Nal events close in time to muon veto panel PMT events above threshold
 - 1.5" steel between NaI crystals and veto panels to avoid vetoing signal
 - Systematic incorporated into analysis to account for uncertainty in veto thresholds
- Veto rejects ~93% of cosmic muon backgrounds between 10-55 MeV
 - Additionally benefit from looking in a small (several microsecond) window around SNS timing signal to reduce backgrounds

Event Reconstruction

- Energy from all NaI channels (above 1 MeV threshold) summed together if occur within 400ns window
 - Topology not currently used in analysis, something to study further
- Correlate timing of events with muon veto signals, SNS timing signals

Fermilab JETP Seminar – December 9th, 2022

50

40

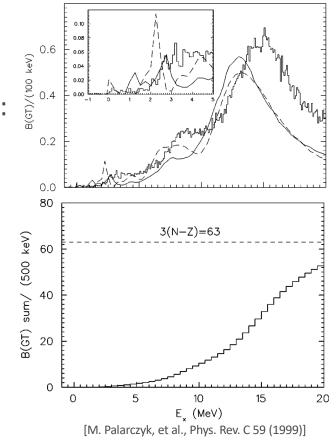
30

20

10

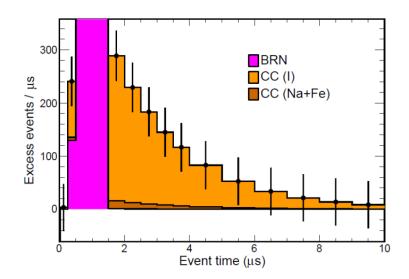
Column

MARLEY predictions for ¹²⁷I


- MARLEY used for ¹²⁷I charged-current predictions along with (p,n) charge-exchange data
- MARLEY's inclusive cross section for DAR neutrinos:

 $22.5^{+1.2}_{-6.5} imes 10^{-40}~{
m cm^2}$

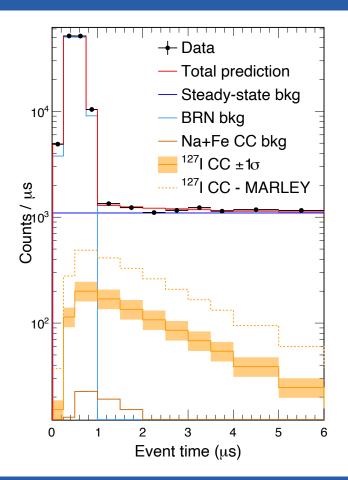
- Uncertainty from B(GT⁻) normalization uncertainty
- Cross section for exclusive channel to ¹²⁷Xe_{bound}:


$2.5^{+0.3}_{-0.6} imes 10^{-40} \ ext{cm}^2$

• Good agreement with LAMPF measured value of $2.84 \pm 0.91(stat) \pm 0.25(sys) \times 10^{-40} \text{ cm}^2$

PDFs

- Simulate charged-current events in GEANT4, process matching analysis cuts to arrive at signal PDF predictions
 - Restrict to 10-55 MeV where most of signal expected to reside, above neutron capture energy on ²³Na and ¹²⁷I
 - Expect 1,320 CC events on ¹²⁷I
 - ~61 events from CC on sodium, iron shielding
- Three main results:
 - Inclusive cross-section: 1D fit in time
 - Spectrum of charged-current events: 1D fits in time in 5 MeV energy bins
 - Zero-neutron emission (0n) cross section and oneneutron emission (1n) cross sections within MARLEY model: 2D fit in energy and time

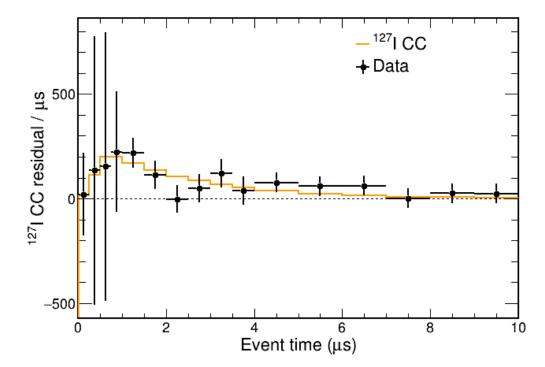

Uncertainties

- Largest uncertainty is neutrino flux (again!)
- Second largest uncertainty is due to unknown veto threshold, non-uniformity of light collection from muon veto panels
 - Even with 1.5" steel between NaI detector and veto panels, some charged-current signal triggers veto system in simulation
- Signal mostly at higher energies, uncertainties in calibration, energy resolution, trigger efficiency have little effect on number of counts in energy region-of-interest

Quantity		I-CC Unc [%]	Na-CC Unc [%]		Fe-CC Unc [%]	
Neutrino flux		± 10.0	± 10.0		± 10.0	
Trigger Efficiency		+0.0 - 0.3	+0.0 - 0.1		+0.0 - 1.0	
Calibration		+0.0 -0.0	+0.0 -0.0		+0.1 - 0.3	
Energy Resolution		+0.0 -0.0	+0.0 - 0.0		+0.2 - 0.2	
Muon Veto Threshold		+2.8 - 5.1	+1.1 - 2.0		+2.0 - 3.7	
Total:		+10.4 -11.2	+10.1 - 10.2		+10.2 - 10.7	
Event Type	nTargets ($\times 10^{26}$) MARLEY σ (>	$\times 10^{-40} {\rm cm}^2$)	Eff.	Unc.	Number
I-CC	7.4	22.5		0.758	+10.4-11.2	1320^{+148}_{-137}
Na-CC	7.4	0.5		0.793	+10.1-10.2	31^{+3}_{-3}
Fe-CC	50.0	2.9		0.021	+10.2-10.7	31^{+3}_{-3}

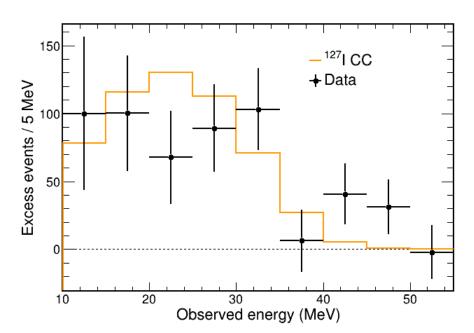
Results: Inclusive Cross Section

- Best fit gives 541^{+121}_{-108} events
 - 5.8 σ evidence of CC events
 - χ² of 13.1, 12 d.o.f.
- Corresponds to cross section of
 - $9.2^{+2.1}_{-1.8} imes 10^{-40} \ \mathrm{cm^2}$
 - 40.9% MARLEY cross section

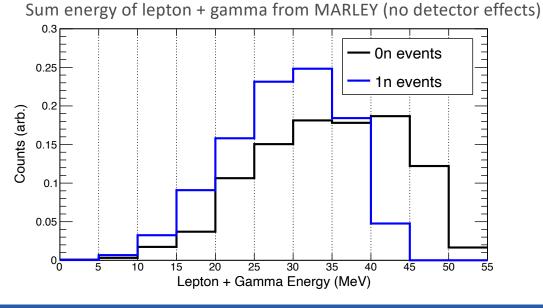


Results: Inclusive Cross Section

- Best fit gives 541^{+121}_{-108} events
 - 5.8 σ evidence of CC events
 - χ² of 13.1, 12 d.o.f.
- Corresponds to cross section of


 $9.2^{+2.1}_{-1.8} imes 10^{-40} \ \mathrm{cm^2}$

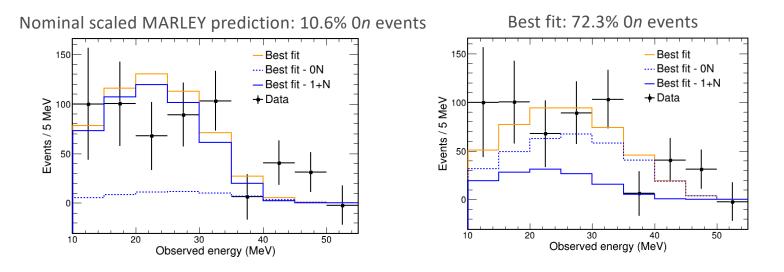
- 40.9% MARLEY cross section
- Subtract off steady-state, BRN backgrounds to form signal residuals for 1D timing fit across 10-55 MeV range


Results: ¹²⁷I Charged-Current Spectrum

- Fit 1D timing spectrum in 5 MeV bins from 10-55 MeV to generate an energy spectrum
 - In each bin, independent fits to timing to estimate BRN and CC amplitudes
- Does not show great agreement with scaled MARLEY model, but two caveats
 - Large error bars on due to low statistics
 - Forbidden transitions not incorporated in MARLEY predictions

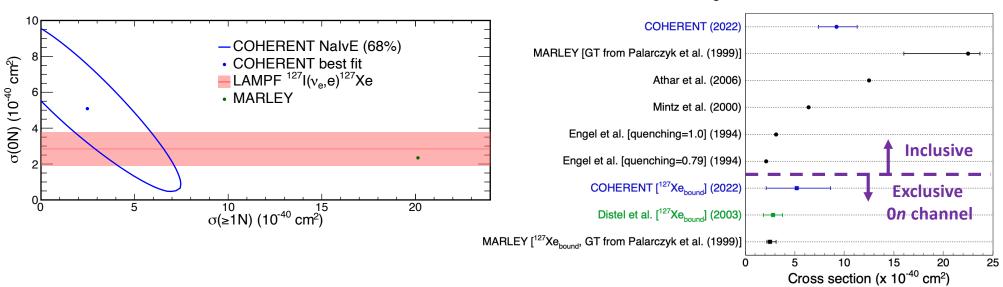
Result: 0n/1n Cross Sections

- Different spectrum of visible energy (gammas + lepton) for events with neutron emission (1*n*) compared to those without (0*n*)
 - Threshold for 1*n* emission events is 7.9 MeV compared to 0*n* threshold of 0.7 MeV
 - Plot intended to demonstrate difference in spectral shape, amplitudes arbitrary



Samuel Hedges, LLNL

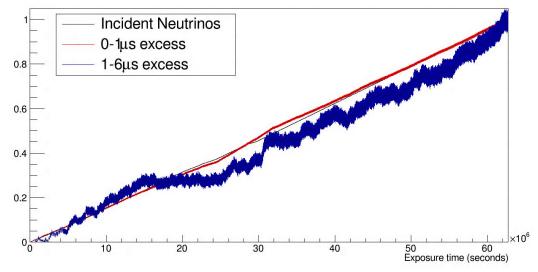
Fermilab JETP Seminar – December 9th, 2022


Result: 0n/1n Cross Sections

- After simulating events in detector geometry, 2D fit in energy and time allowing 0n and 1n amplitudes to float freely
- MARLEY predicts 10.6% events are 0n, data favors larger fraction (72.3%) of events are 0n
- On cross section: 5. $2^{+3.4}_{-3.1} \times 10^{-40}$ cm²
 - Compare to LAMPF measured value: $2.84 \pm 0.91(stat) \pm 0.25(sys) \times 10^{-40} \text{ cm}^2$
- 1*n* cross section: 2. $4^{+3.3}_{-2.4} \times 10^{-40}$ cm²

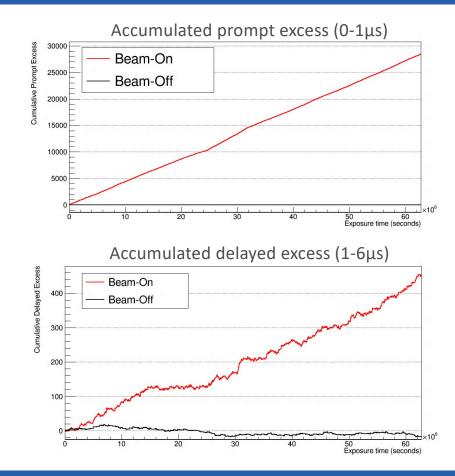
Fermilab JETP Seminar – December 9th, 2022

Comparison of Results

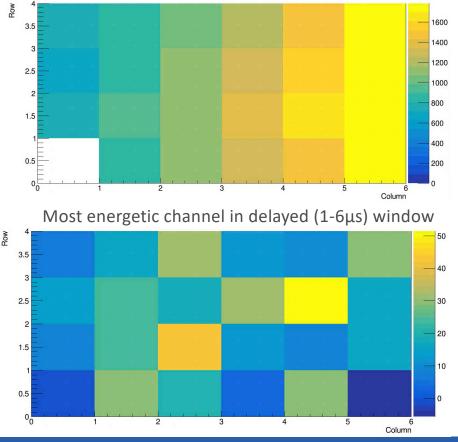


¹²⁷I Flux-Averaged DAR Cross Sections

Samuel Hedges, LLNL


Post-Unblinding Checks

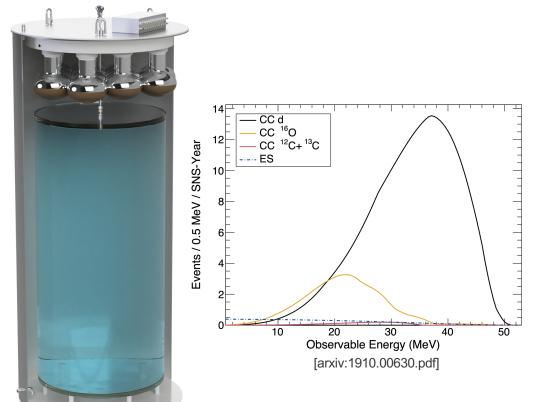
- K-S test shows good agreement between prompt and delayed excesses and delivered beam
 - With 1000 pseudo-experiments, K-S probabilities are 1.000 and 0.987 from prompt and delayed excesses


Post-Unblinding Checks

- K-S test shows good agreement between prompt and delayed excesses and delivered beam
 - With 1000 pseudo-experiments, K-S probabilities are 1.000 and 0.987 from prompt and delayed excesses
- No excess observed in prompt/delayed windows when beam not on target

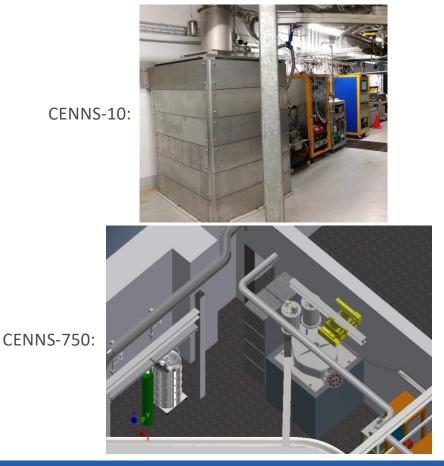
Post-Unblinding Checks

- K-S test shows good agreement between prompt and delayed excesses and delivered beam
 - With 1000 pseudo-experiments, K-S probabilities are 1.000 and 0.987 from prompt and delayed excesses
- No excess observed in prompt/delayed windows when beam not on target
- Some initial topology studies show neutrons incident on detector from side, do not see same pattern for delayed events
 - Helps understand BRN background for COHERENT's other detectors


Most energetic channel in prompt (1-6µs) window

Future COHERENT Measurements

Fermilab JETP Seminar – December 9th, 2022


D₂O for Flux Normalization

- Neutrino flux one of largest uncertainties at SNS, ~10%
 - v_e CC cross section on ²H calculated to within 2-3%
- Deploying 600-kg D₂O detector measure flux, reduce uncertainties
- May also be able to measure ¹⁶O charged-current events
 - Potentially useful for understanding supernova neutrinos interacting via this channel in large water detectors

CENNS-10/CENNS-750

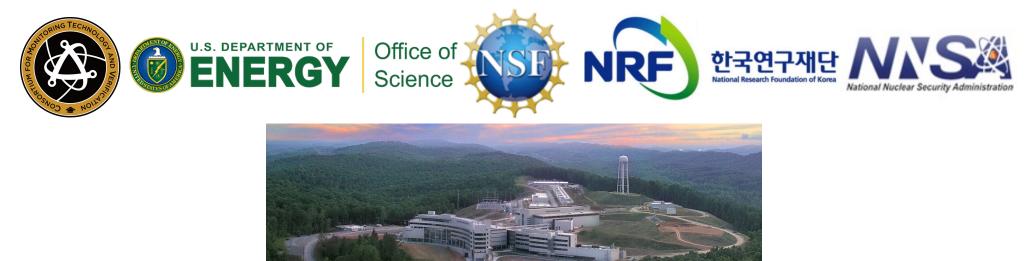
- CENNS-10 single-phase liquid argon detector with 24-kg fiducial volume, deployed in 2016
 - Primary goal to measure CEvNS, data being studied to see what can be said about inelastic events on ⁴⁰Ar
- CENNS-750 upgrade in development, increase statistics and go after charged-current interactions on ⁴⁰Ar
 - Recent funding from Korea National Research Foundation (Jun 1, 2022)
 - Will study CEvNS, charged-current, and dark matter

NuThor: Neutrino-Induced Fission

- Detector designed to study neutrinoinduced fission, a long-theorized but never observed process
- Looks for neutrons from neutrino-induced fission through capture of gadoliniumdoped water
- Initial data collection has started!

NalvETe

- Nal neutrino Experiment TonnE-scale (NalvETe)
- Ton-scale version of NalvE-185, consisting of 315 Nal detectors (2,425 kg)
- Main goal is to measure CEvNS on ²³Na
- Space left in design to implement muon veto panel to enable charged-current measurement
- Better gamma shielding, water shielding, and improved statistics from larger mass, may be able to go after CC on ²³Na/²⁷Al as well


Fermilab JETP Seminar – December 9th, 2022

Summary

- COHERENT has results from its first searches for inelastic neutrino-nucleus scattering at the SNS
 - Lead neutrino cube reports NIN cross section on lead suppressed by factor $0.29\substack{+0.17\\-0.17}$ compared with MARLEY model
 - NalvE-185 reports cross section 40.9% lower than predicted
 - Shows need for improved understanding of uncertainties in nuclear models
- More analysis to be done on existing datasets:
 - 2*n* emission events for lead neutrino cube
 - NIN analysis for iron neutrino cube
 - Machine learning approach for NalvE-185
- Suite of other detectors coming online in the next few years, should expand existing low-energy inelastic neutrino-nucleus measurements
 - D₂O for reducing flux uncertainty, ¹⁶O CC events
 - NuThor for neutrino-induced fission on ²³²Th
 - NalvETe increase stats on ¹²⁷I CC, potentially ²³Na/²⁷AI CC as well
 - CENNS-750 for ⁴⁰Ar

Acknowledgements

- Thanks to **Brandon Becker** (GEANT4 lead neutrino cube simulations), **Peibo An** (NalvE simulations/Michel calibration), **Daniel Pershey** (lead neutrino cube/NalvE fitting)
- This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Thank you for your attention!

Fermilab JETP Seminar – December 9th, 2022