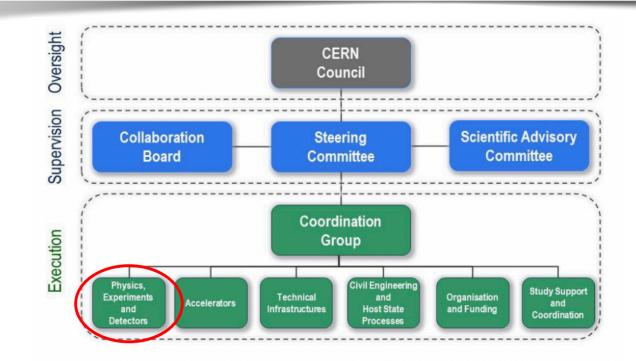


"Doing analysis for FCC-ee"

i.e. overview and organisation of Physics & Performance Studies

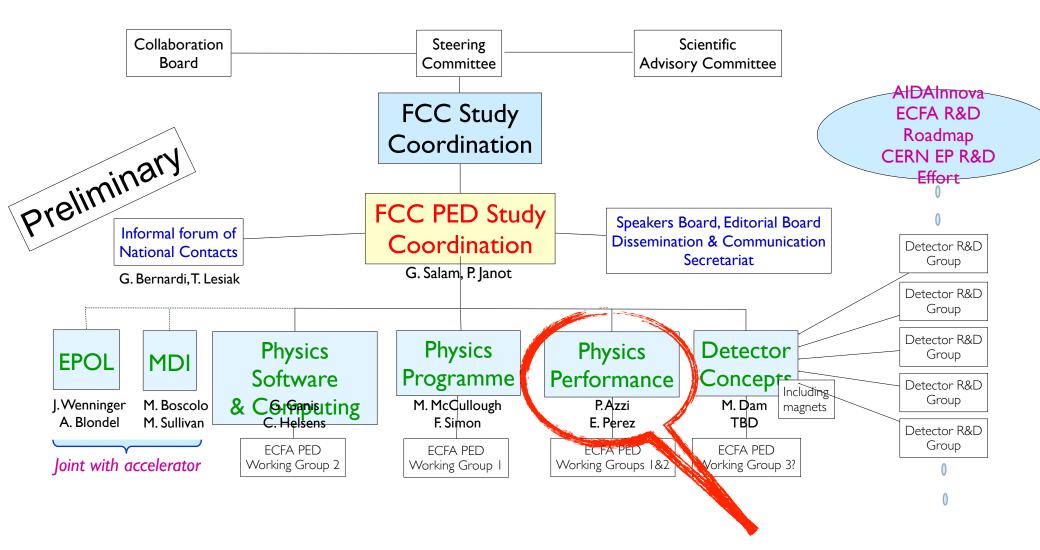
FNAL FCC Day - 10/28/2022


P. Azzi (INFN-PD/CERN)

With many thanks to E. Perez, G. Ganis, C. Helsens, J. Alimena, et al...

- The physics landscape of the FCC-ee program extends in all possible directions:
 - * the difference in the physics focus at the different \sqrt{s}
 - the difference in the event kinematic of running from 90GeV (and possibly below) up to 365GeV
 - the challenge of being able to achieve superbe precision on SM processes but also perform unique direct searches for new physics
- The list of interesting processes and measurement is extensive, and it has not been fully explored yet, even in terms of sensitivity.
- From this richness, we need to extract concrete benchmark measurements, the « case studies » that will be used to extract requirements on what is missing to achieve our ambitious goals: detector requirements, reconstruction tools, calibration techniques.

FCC Feasibility Study (2021-2025)

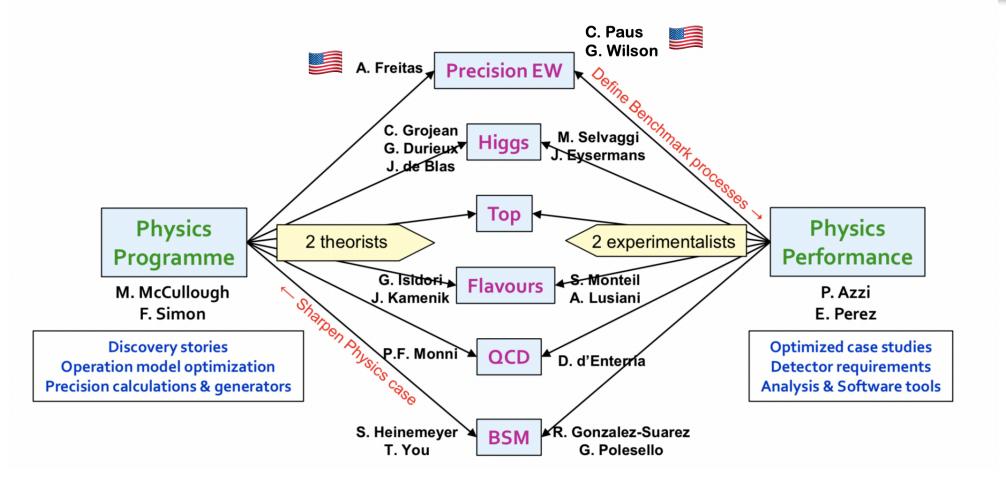

FCC

FUTURE CIRCULAR COLLIDER FEASIBILITY STUDY:CERN/SPC/1161
CERN/3588RESTRICTED COUNCIL
203rd SessionMAIN DELIVERABLES AND MILESTONESOriginal: English
21 June 202117 June 2021

 a committee including external experts will be established to review the cost of the firststage project (the tunnel and the FCC-ee collider) by mid-2023; a second cost review will take place at the end of the Feasibility Study in 2025;

PED pillar organisation to tackle these

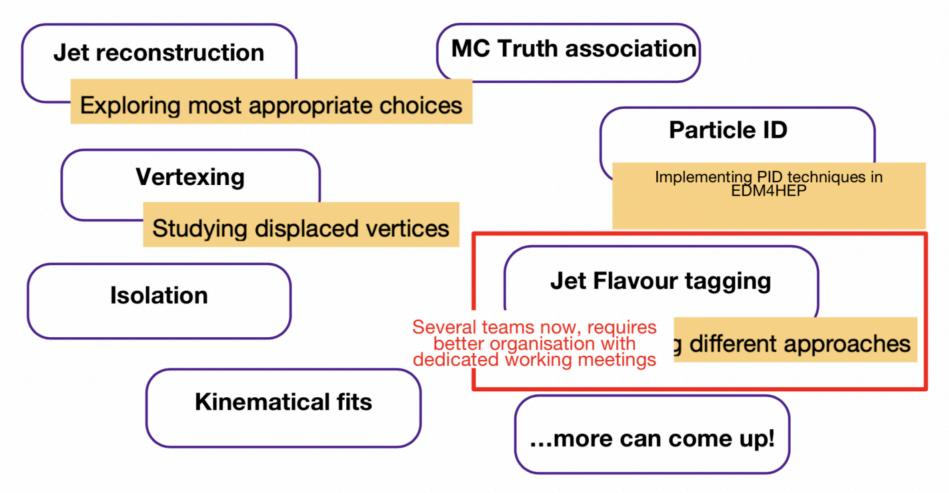
FCC



Fermilab FCC-ee event - 10/28/2022

CFCC

Six working groups (with at least one experimentalist and one theorist conveners, tbd) Focus on the phenomenological aspects of the integrated FCC programme 1. Precision Electroweak Physics → Z peak and WW threshold (ee) → High-energy diboson and difermion (hh) 2. Higgs physics 3. Flavour (c, b, τ) physics 4. **BSM Physics** Indirect sensitivity from precision measurements (ee and hh) • Direct BSM searches at the smallest couplings (ee and hh) and highest masses (hh) -5. QCD 6. **Top physics** To be considered in addition Physics at FCC-hh with dedicated experiments • FCC Week 2021 Patrick Janot 12 28 June 2021


Physics Groups Structure

FCC

* Topics to be discussed in specific working meetings or in the general Physics Performance.

FCC

Physics Programme key deliverables

- Within the domain of expertise of each working group
 - Bring together theorists and experimentalists
 - Report on recent results in the literature and develop new ideas
 - New models to probe; new experimental tests to implement; new observables to test
 - Examine different operation models (L vs √s: values and time ordering)
 - Propose ancillary (in situ) measurements of key accelerator/detector parameters
 - Propose physics benchmark measurements
 - Which may lead to new detector performance requirements or theory precision requirements
 - Plan for precision theory calculation development, to match experimental uncertainties
 - A strategic priority for FCC-ee Such developments have focussed on LHC in the past 20 years.
 - Review existing MC generators
 - And plan for upgrade to include most recent theoretical progress
 - Deliver and test global fitting code and formulae
 - For standard model, specific BSM models, and generic Effective-Field-Theory (EFT) approach
 - Organize public documentation for the results of the working group

Patrick Janot	FCC Week 2021	12
	28 June 2021	13

Physics Performance makes the link between:

FCC

Physics Benchmarks measurements, proposed by the Physics Programme

Detector Requirements, used by Detector Concepts

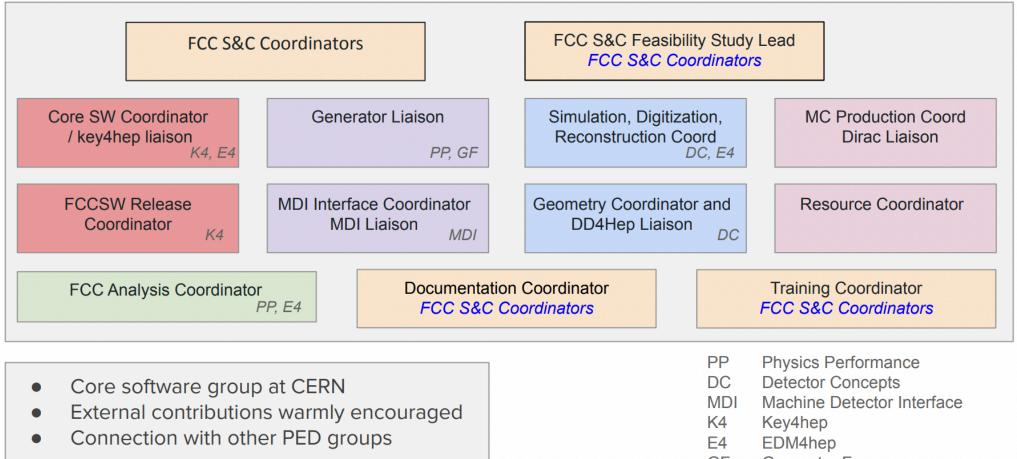
By means of concrete Physics Case Studies

- * For each *Physics Benchmark* measurement:
 - Identify and implement one or several case studies to optimise the ultimate statistical sensitivity
 - * Identify and evaluate the limiting systematic uncertainties
 - Establish detector requirements to match systematic uncertainties with statistical precision and pass them on to the Detector Concept WP

>>>"Case Studies": reverse engineering of a chosen benchmark process. The elements contributing to the final results are "unpacked" to allow maximal optimisation on all aspects.

- extract detector requirements to achieve desired performance
- develop a detector simulation that allows this performance to be merged in the full analysis
- develop reconstruction algorithms that fully exploit the detector information
- develop calibration strategies and analysis techniques to shrink the uncertainties as needed
- Extract requirements on event generation and simulation of machine effects to ensure realistic predictions

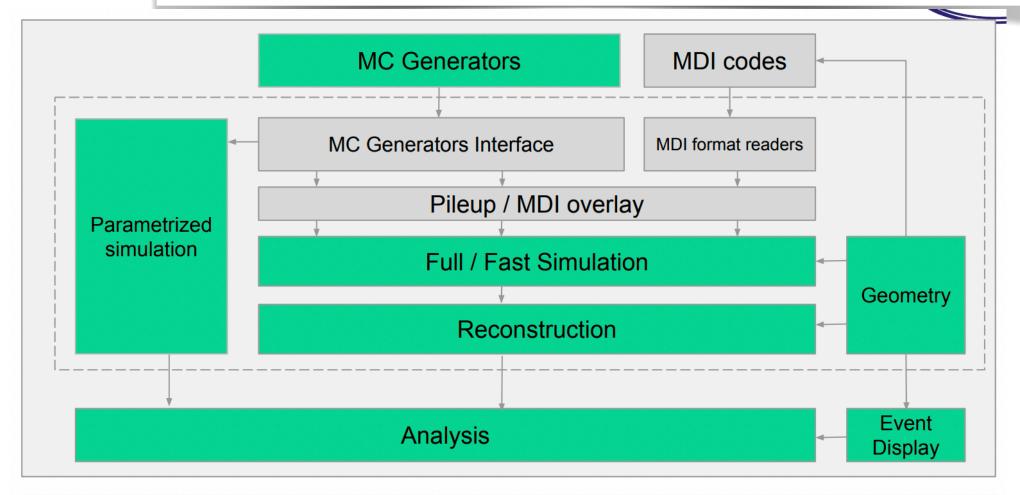
* Several "case studies" have started covering very different physics topics.


- * Documentation: https://hep-fcc.github.io/FCCeePhysicsPerformance/
- * They are at different level of maturity both from the analysis point of view but also from the software tools that are used.

* In collaboration with the Software Coordination, *common tools* are provided such as:

- Delphes simulation samples within EDM4HEP centrally generated (and documented)
 - * Common samples: <u>http://fcc-physics-events.web.cern.ch/fcc-physics-</u> events/FCCee/spring2021/Delphesevents_IDEA.php
 - * Information here: <u>https://bit.ly/35Lgft5</u>
- * FCCAnalysis framework+examples (in git)
 - the latter benefits from stand-alone developments (as addition to dataframe tools) or developments within Delphes (e.g. vertex fitter, PID...)

* However, in some cases, it was easier for the analysers to choose to use a standalone approach. This will require a porting of the analysis to the common code later on.


FCC Software & computing structure

GF Generator Forum

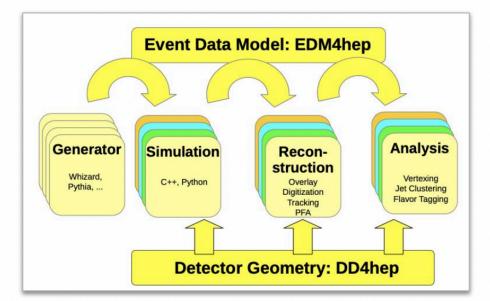
Typical workflows to support

Software Infrastructure (Build/Test/Deploy) Workload and Data Management

Create a software ecosystem integrating in optimal way various software components to provide a ready-to-use full-fledged data processing solution for HEP experiments

Complete set of tools

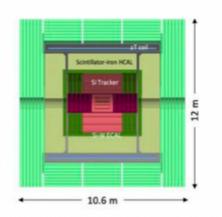
- Generation, simulation, reconstruction, analysis
- Build, package, test, deploy, run


Common Core ingredients

- PoDIO for EDM4hep, based on LCIO and FCC-edm
- Gaudi framework, devel/used for (HL-)LHC
- DD4hep for geometry, adopted at LHC
- Spack package manager, lot of interest from LHC

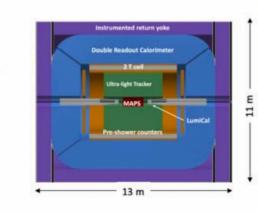
Community project

- Unifying communities, synergetic enterprise
- Contributions from CLIC, ILC, FCC, CEPC and EIC


Full support by ECFA, AIDA, CERN EP R&D

Kick-off meetings <u>Bologna</u> (6/2019), <u>Hong Kong</u> (1/2020) <u>Weekly working meetings</u> Deliverables already used in large scale production

Detector Concepts Fast Overview


IDEA

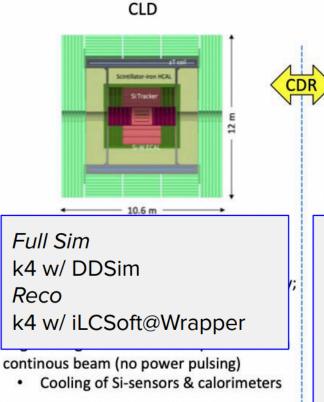
CLD

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker; CALICE-like calorimetry; large coil, muon system
- Engineering still needed for operation with continous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?

Mogens Dam / NBI Copenhagen

- Less established design
 - But still ~15y history: ILC 4th Concept
 - Si vtx detector; ultra light drift chamber w powerfull PID; compact, light coil; monolitic dual readout calorimeter; muon system
 - Possibly augmented by crystal ECAL
- Very active community
 - Prototype designs, test beam campains, ...

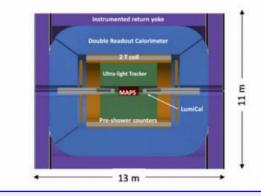
Noble Liquid ECAL based


- A design in its infancy
- High granularity Noble Liquid ECAL is core
 - PB+LAr (or denser W+LKr)
- Drift chamber (or Si) tracking; CALICE-like HCAL; muon system.
- Coil inside same cryostat as LAr, possibly outside ECAL
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

CERN EP R&D Days

20 Jun, 2022

4


Detector Concepts Fast Overview

- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?

Mogens Dam / NBI Copenhagen



Full Sim Vertex, DC: standalone DR Calo: k4 w/ k4SimG4 *Reco* Vertex, DC: standalone DR Calo: ?

Muon: in the works Simplified Vertex+DC *Full Sim*: k4 w/ k4SimG4 *Reco*: k4 w/ iLC@Wrapper ?

Noble Liquid ECAL based

- Full Sim:
- Simplified Vertex+DC,
- ECAL: k4 w/ k4SimG4 Reco:
- Tracker: k4 w/ iLC@Wrapper ? ECAL: k4

HCAL, muon: in the works

https://indico.cern.ch/event/1165167/timetable/#20220622

Detector Concept kickoff meeting Nice talks on requirements!

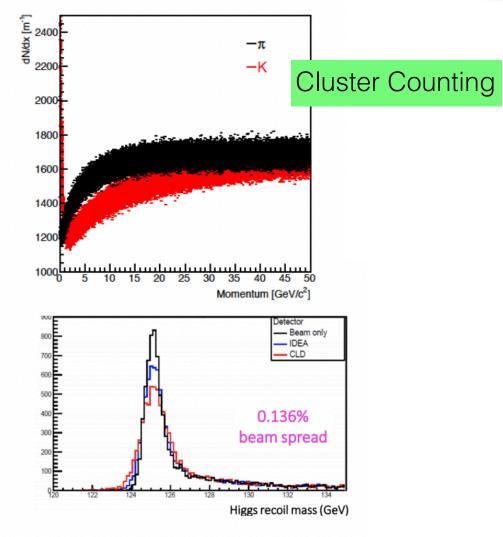
Fermilab FCC-ee event - 10/28/2022

- Latest tutorial last week at CERN: <u>https://indico.cern.ch/</u> <u>event/1182767/</u>
- Needs to be run in person. Would like to propose it borg in the near future.
 S. Eno works on this!
- Added bonus of learning to do analysis for FCC-ee: DD4HEP and DataFrame now used for the LHC experiments.
- Documentation is still in constant evolution, but it has been improved recently.
 - NOTE: Active developers for framework and for analyses are still a small number, so direct contact is best (and some patience)

- Additional brand new tutorial for LLP from J. Alimena here (was created just for this crowd):
 - <u>https://github.com/jalimena/LLPFCCTutorial/blob/</u> <u>main/README.md</u>
- Gives a nice overview focused on the analyses steps for the search of Long Lived signatures.
- Interested people can reach out to me (and her) once they try it out if they have questions or comments.

- For FCC-ee we decide to add more functionality to Delphes, since the FullSimulation of the detector concept in the key4hep is not ready yet (planned for next year).
- Delphes simulates the response of a multipurpose detector in a parameterised fashion
 - designed to deal with hadronic environment, is also well-suited also for e+e- studies
 - detector cards for: CMS (current/PhaseII) ATLAS LHCb -FCC-hh - ILD - CEPC - FCCee (IDEA/CLD)
- Delphes output in EDM4HEP format allows to run same analysis
 code on FullSim events output.
- * More info here: <u>https://indico.desy.de/event/33640/contributions/</u> <u>128007/attachments/77587/100359/delphes_ecfa2022.pdf</u>

CFCC

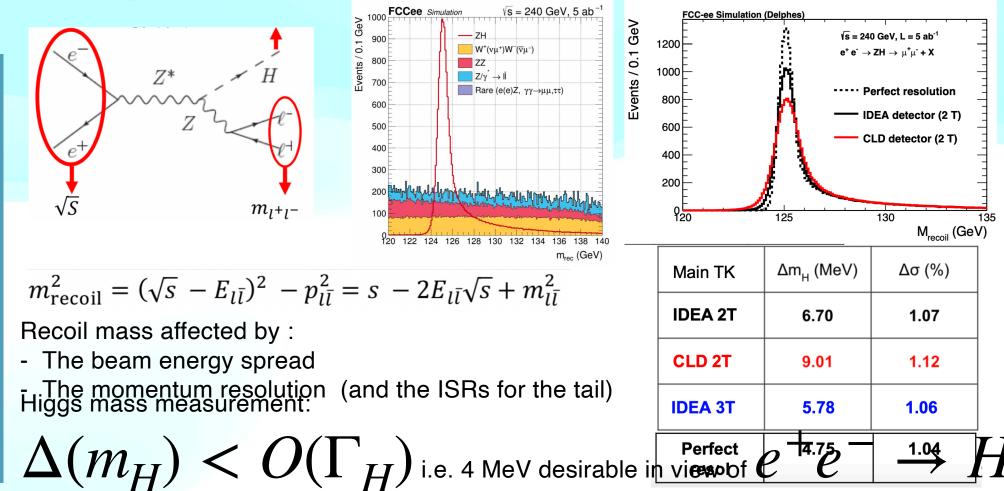

Additions for FCC-ee

TrackCovariance

- Cluster counting for PID
- * Time of flight
- * Jet Clustering
- * EDM4Hep event format

Track Smearing

- Simple tracker geometry implementation, including material
- Computes full covariance matrix (in present Delphes we have "diagonal" smearing in the 5 tracking parameters)
- Can be used for studying impact of material and realistic HF tagging simulation


Bedeschi, Gouskos, MS, [2202.03285]

HIGGS Measurement	Constraining
Higgs boson coupling to c quark	Flavour tagging, vertexing
σ(ZH) and mH, Z →leptons (Mrecoil); New scalars in Z + S	Lepton momentum & energy resolution
σ(ZH) and mH, Z → hadrons ; BR(Higgs invisible)	hadronic mass and hadronic recoil-mass resolution ; Maybe b-tagging
Γ(H) in ZH, H → ZZ*	Lepton ID efficiencies; jet clustering algorithms jet directions, kinematic fits
Higgs boson mass in all exclusive final states (hadronic, taus, etc)	b-tagging eff and purity, jet angular resolution, jet reco, kin fits
Γ(H) with bbnunu events	Visible and missing mass resolutions
HZγ coupling	photon identification, energy and angular scale
e-e+->H production in s-channel at Higgs pole	q / g tagging CERN (former analysis exists & being revamped)

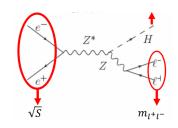
HIGGS MASS AND CROSS SECTION "CASE STUDY"

2107.04509

 $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$

FCC


FCC-ee event - 10/28/2022

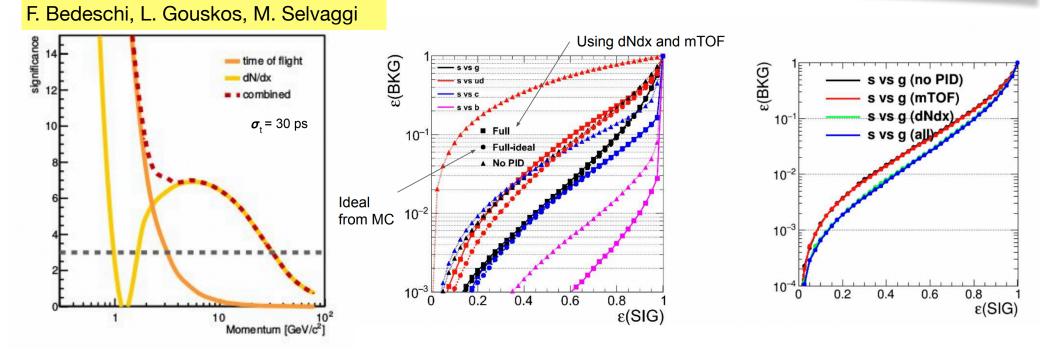

Example: Higgs mass with ZH events

Precise mass motivation, with O(10MeV) already matches the statistical precision on the Higgs, BR, but to constrain or measure electron Yukawa, would need better than the Higgs width (<4.1MeV).

FCC

- This is an ambitious goal that poses challenges and constraints on the measurement with the ZH events
- * Preliminary recoil method determination using $Z \rightarrow \mu\mu$ decays shows $\Delta m(H)$ few MeV with systematics effects from:
 - Beam energy spread, Lepton and jet angular resolution, acceptance, Momentum scale and its stability (as will be shown for the example at the Z)
- * Exploring other channels with hadronic decays of the Z and H will add statistics, but challenge also the performance for reconstruction of jets and kinematical fitting

Jet-flavor tagging


F. Bedeschi, L. Gouskos, M. Selvaggi

() Эн 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴	- b vs b vs b vs b offic	ud C LHC	6 0.8 ε(SI	1 IG)	(D) (D) (D) (D) (D) (D) (D) (D) (D) (D)		ud b	0.6 0.8 ε(
WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)	WP	Eff (c)	Mistag (g)	Mistag (ud)	Mistag (b)
Loose	90%	2%	0.2%	3%	Loose	90%	8%	7.5%	5%
Medium	80%	0.7%	<0.1%	0.4%	Medium	80%	3%	0.9%	2.5%

- New tagging algorithm developed based on DNN approach: DGCNN: [arXiv:1801.07829] ParticleNet: [arXiv:1902.08570]
- * c-tagging efficiency is 80-90%, improves when beam pipe radius decreases
- * $H \rightarrow c\bar{c}$ coupling performance: $\delta(\sigma \times BR)/(\sigma \times BR) \% \approx 0.6$ (stat.only) or 2.9(no Bkg rej): promising!

O FCC

Strange tagging

- * Combined PID with dN/dx and TOF(30ps): 3σ K/π separation for p<30GeV
 - * Using IDEA concept with Drift Chamber
- First look. Investigating possible improvements, maybe 30ps not enough?

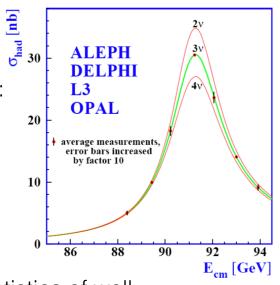
WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	20%	40%	10%	1%
Medium	80%	10%	20%	6%	0.4%

EWK Measurements at the Z	Constraining
Total width of the Z (see next slide)	Track momentum (and angular) resolution, scale (magnetic field) stability
Rb, Rc, AFB of heavy quarks	Flavour tagging, acceptance, QCD corrections
alphaS measurement	Z -> jets
Ratio R_{ℓ}	Geometrical acceptance for lepton pairs
AFB (muons) and $\alpha(QED)$	EW corrections and control of IFI (initial-final state radiation interference)
Luminosity from diphoton events ; NP in diphotons	e/gamma separation, gamma acceptance


EWK Measurements at the Z	Constraining
Total width of the Z (see next slide)	Track momentum (and angular) resolution, scale (magnetic field) stability
Rb, Rc, AFB of heavy quarks	Flavour tagging, acceptance, QCD corrections
alphaS measurement	Z -> jets
Ratio R_{ℓ} AFB (muons) and $\alpha(QED)$ $\begin{array}{c} G. Panizzo, \\ M. Cobal \\ & & \\ $	Geometrical acceptance for lepton pairs corrections and control of IFI (initial-final e radiation interference)
Luminosity from diphoton even NP in diphotons	amma separation, gamma acceptance А _{FB} (bb) analysis started on centrally produced samples.
Fermilab FCC-ee event - 1	10/28/2022

Example : Determination of the Z width

Can be controlled via the direct measurement of $M\mu\mu$ in di-muon events : compare the peak positions at the different \sqrt{s} points.


- σ (Mµµ) : statistical potential to control relative $\delta(\sqrt{s})$ to O(40 keV)
- Requires the stability of the momentum scale, esp. of B, to that level, i.e. 40 keV / 90 GeV < 10⁻⁶

In-situ, using the large statistics of wellknown resonances, e.g. $J/\psi \rightarrow \mu\mu$

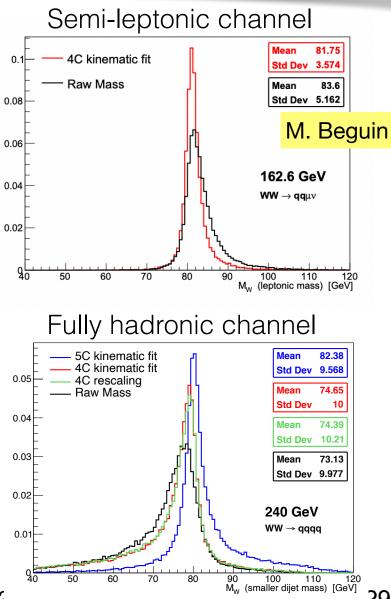
First studies: Target seems within reach with an IDEA-like resolution.

- post-doc left, but code available!
- candidate analysis to move asap to FullSim tracks !

CFCC

EWK Measurements at the WW	Constraining
Coupling of Z to nu_e (also, at the Z peak: invisible ALP, dark γ)	Photon energy resolution, acceptance, track efficiency
M _w from WW -> had, semi-lep	Lepton and jet angles, Kinem fits
(d)σ(WW) for M _w , TGCs	Lepton ID, angular resolutions
Vcb via W -> cb	Flavour tagging
W leptonic BRs	Lepton ID, acceptance
Meas of √s via radiative return	lepton and jet angular resolutions, acceptance

O FCC


Example: W mass direct reco

- Precise M(W) from threshold run ~400keV (stat)
- * M(W) direct reconstruction from decay products useful at any √s>threshold
- Competitive as statistical uncertainty but different challenges to be considered:
 - * Event reconstruction, choice of jet algorithms
 - * Lepton momentum scale and resolution
 - * Kinematical fitting

Definition of W mass estimators and study and optimisation of:

- Statistical and systematic uncertainties with templates fit
- * W hadronic decay modelling systematics
- Exploiting also ZZ and Zγ events for constraints and calibration
- Thesis of M. Beguin available as starting point

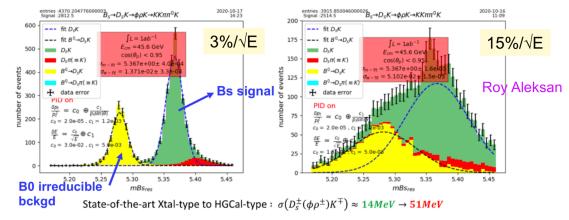
Fermilab FCC-ee event - 10/28/2___

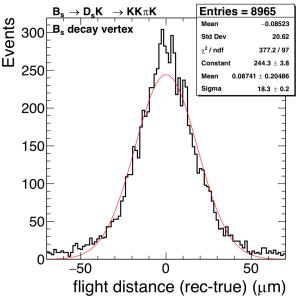
Flavour and tau physics

Measurement	Constraining	
B _s -> D _s K	Many things Vertexing, PID, EM resolution	
Bc -> tau nu	Flight distance resolution (vertexing)	
B -> K* tau tau	Flight distance resolution (vertexing)	
Modes with pi0's	EM resolution	
Tau Lifetime	Construction and alignement of vertex detector	
Tau mass	Track momentum scale (in multi-track collimated environment)	
Tau leptonic BR	Electron and muon ID	
Tau polarisation and exclusive BR	Photon, Pi0, neutrals, K/pi separation	
Lepton Flavor Violation in Z and tau decays	Lepton momentum scale	

Flavour and tau physics

Measurement		Constraining		
B _s -> D _s K		Many things Vertexing, PID, EM resolution		
Bc -> tau nu		Flight distance resolution (vertexing)		
B -> K* tau tau		Flight distance resolution (vertexing)		
Modes with pi0's		EM resolution		
Tau Lifetime		Construction and alignement of vertex detector		
Tau mass		Track momentum scale (in multi-track collimated environment)		
Tau leptonic BR	•	samples of limited use for (several of) these tau studies.		
Tau polarisation and exclu	-Clustering developments in FCCSW with the LAr[NBI]			
		-based tau-ID in the IDEA calo [Roma]		
decays				


Excellent benchmark for several detector requirements !


Precise reconstruction of displaced vertices

- Esp. for CP violation measurements
- Vertexing tools implemented within FCCAnalyses

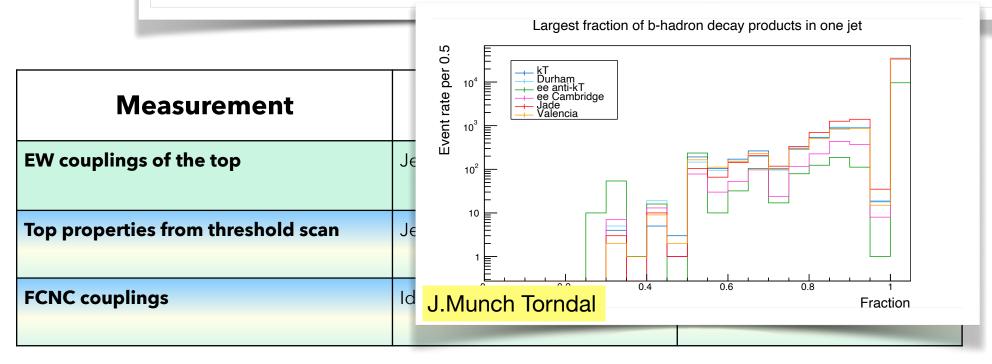
Excellent EM resolution

• Mandatory to see the signal in modes with neutrals !

Good starting points exist. Need to put all bricks together in the common framework.

• Good π / K separation

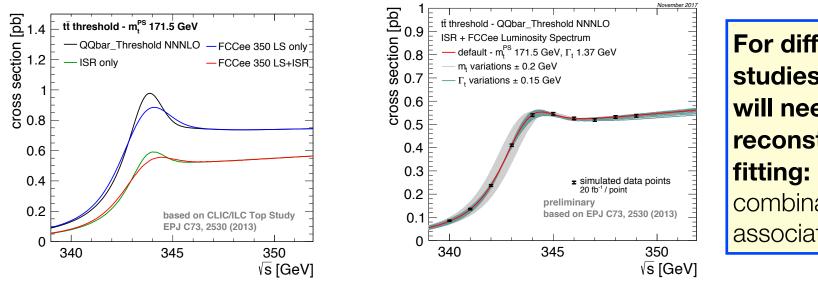
• PID tools recently implemented in Delphes


Fermilab FCC-ee event - 10/28/2022

Measurement	Needs good:	Person-power
EW couplings of the top	Jet reco, b-tagging, kine fits	NBI
Top properties from threshold scan	Jet reco, b-tagging, kine fits	Strasbourg/Padova
FCNC couplings	ldem + photon reco	Tehran/Behshahr

FCC

Top physics



EWK Coupling of the top:

- Study of different jet clustering algorithm in top I+jets events
- Development of code to rerun jet clustering after Delphes
- Addition of parameterised B-tagging in FCCAnalysis
- Reoptimization of event selection
- Development of fitting code in progress

- * Most precise top mass measurement method with specific threshold scan of 100fb⁻¹
- * Theory available at NNNLO/NNLO+NNLL: $\Delta m/m \approx 40 MeV$ from scale. Generators description of the threshold region important
- * No need for kinematic fit, counting experiment: optimisation of threshold scan strategy important
- * Needs excellent control of beam energy, beam energy spread, luminosity spectrum ($\Delta m/m \approx 3MeV$) and ISR : generator description to study effects
- * Needs excellent b-tagging, jet algorithm reconstruction: systematics effects from selection to be studied
 - * If α_S from TeraZ $\Delta m/m \approx 5 MeV$ (30MeV for parametric uncertainty if current value)

For differential studies at threshold will need direct top reconstruction and fitting: control combinatorial effects, association, etc...

Fermilab FCC-ee event - 10/28/2022

BSM Direct searches

HNL	displaced verticesspecific tracking	Uppsala/Graz/Geneva
ALPS: ee $\rightarrow a\gamma \rightarrow 3\gamma$	 Photon resolution separation of close-by photons displaced γ vertices 	Pavia FullSim needed…
ALPS: $\gamma\gamma \rightarrow \gamma \rightarrow \gamma\gamma$	Photon resolution	CERN / Rio
Dark Photons $ee \rightarrow \gamma \bar{\gamma}$	Photon resolution	Udine [2020] <u>https://arxiv.org/abs/</u> 2006.15945

BSM Direct searches

HNL	displaced verticesspecific tracking	Uppsala/Graz/Geneva
ALPS: ee $\rightarrow a\gamma \rightarrow 3\gamma$	 Photon resolution separation of close-by photons displaced γ vertices 	Pavia FullSim needed…
ALPS: $\gamma\gamma \rightarrow \gamma \rightarrow \gamma\gamma$	Photon resolution	CERN / Rio
$\begin{array}{c} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{ \overbrace{b}{b}{} \overbrace{b}{ \overbrace{b}{} \overbrace{b}{ \overbrace{b}{b}} \overbrace{b}{ \overbrace{b}{ \overbrace{b}{b}{} \overbrace{b}{ \overbrace{b}{b}} \overbrace{b}{ \overbrace{b}{ \overbrace{b}{b}{ b} \overbrace{b}{ \overbrace{b}{b} \overbrace{b}{ b} \overbrace{b}{ \overbrace{b}{b} \overbrace{b}{ b} \overbrace{b}{ \overbrace{b}{b} \overbrace{b}{ b} \overbrace{b} $	Iight-by-light FCCee (365 GeV) FCCee (240 GeV) FCCee (160 GeV)	Udine [2020] https://arxiv.org/abs/ 2006.15945 sensitivities extracted on t production of ALPS. IDEA Delphes card in

- BSM processes with with very long lived particles, or unusual signatures, can be probed particularly well at a lepton collider with a large statistics such a Tera-Z.
 - For a general overview of the challenges EPJ+ essay: https://arxiv.org/ abs/2106.15459 (under review)
- Given the rich list of models proposed, theorist and experimentalist have been meeting up regularly in an "informal group" focusing on:
 - * defining benchmarks models, with different signal characterisation
 - * analysis code in place for validation of MC signals in Delphes for HNL
 - defining "case studies": to extract detector requirements
 - Delphes being updated to allow developments while FullSim becomes ready.
- Area with documentation & initial code in the PhysicsPerformance Github: https://hep-fcc.github.io/FCCeePhysicsPerformance/case-studies/BSM/LLP/

- Perfect entry point for a newcomer.
- * Easy to find a topic matching your expertise:
 - future physics studies while working at an LHC experiment
 - trying new technologies & new algorithms, pushing the limits of detector and analysis performance
 - Favorite detector technology that can be connected to a physics study
- Regular monthly meetings 3rd Monday of the month afternoon
- * Documentation: https://hep-fcc.github.io/FCCeePhysicsPerformance/

* « case studies » have generated a very nice momentum!

 the FCCAnalysis model has proven to be easy to use and it allows a collaborative modus operandi that speeds up work

* The start of the Physics Programme activities will nicely merge and complement ongoing work

- through the proposal of new benchmarks to extend the physics potential exploration using the tools developed within PPC
- * The start of the Detector Concept Coordination area will help speed up the development of FullSimulation response to explore new design and technologies
 - * A nice feedback from "case studies" result will inform and guide detector designs

A concrete goal of the mid-term document end of 2023 coming up with new detector concepts is a fun challenge to try. Recycling/exchange of knowledge and skills back to LHC or other future projects is possible Definition of tasks allows to progress even with small FTE available