Muon Collider Physics and Detector workshop

Physics Demands (on detectors)

Zhen Liu University of Minnesota 12/16/2022

High Energy Rules

Snowmass Report: 1401.6114

The power of cleanness

• LEP still is a headache/treasure of theorists

Dawson et al, <u>2209.07510</u>

The power of cleanness

- LEP still is a headache/treasure of theorists
- 1M Higgs Higgs factory v.s. 0.5B Higgs HL-LHC

 $\Delta \alpha_{\rm had}^{(5)}({
m M_Z^2})$ -3 -2 -1 0 1 2 $({
m O_{fit}} - {
m O_{meas}}) / {
m o_{meas}}$

12/16/2022

 $\overline{\mathbf{m}}_{c}$

 \overline{m}_{h}

A,(LEP)

A_I(SLD)

sin²⊖^{lept}(Q_{FB})

0.0

0.2 0.2 0.1

-1.7 -1.1

-0.8

-0.7

0.6

0.9

-2.4

-0.1

Zeroth Order

Let's get a high-energy muon collider running!

- Energy Resolution (comparable to current)
- Granularity (comparable to current)

(Any reasonable detector performance would deliver baseline physics goals: dive deeply into the 10~TeV realm.)

We are very excited!

0.5th-1st Order

There are various good features to have, some are urgent some are less urgent.

12/16/2022

0.5th-1st Order

There are various good features to have, some are urgent some are less urgent.

Pheno Demands? (solutions are not unique).

Demands? (randomly ordered)

- o) great energy resolution for all SM precisions;
- forward muon;
- additional long-lived particles trigger;
- dark showers;
- triggerless data possible? At least a triggerless readout?
- disappearting track (low threshold and low bkg);
- good missing energy measurements?
- anomaly detection (lepton collider environment make it stand out more sharply, let's use the clean data!)
- precision timing
- On beam: high energy & high Lumi (also low energy s-channel with low beam energy spread).

12/16/2022

The beam-induced background simulation

12/16/2022

The beam-induced background simulation

Beam-induced background Studies at $\sqrt{s} = 1.5 \text{ TeV}$

Contributions form μ decays |z| > 25 m become negligible for all background species but Bethe-Heitler muons

momentum and

the IP.

12/16/2022

different arrival time in

Precision Energy

Single Higgs Precision at a Muon Collider

Speaker: Matthew Forslund (Stony Brook University)

Dominant background from Z-peak: distinguishing the two is crucial

3 TeV has also been done with fullsim: quite similar results (2209.01318)

The $c\bar{c}$ and gg channels are very similar, with mistagged $H\to b\bar{b}$ contributing a large background as well

Precision Energy

Single Higgs Precision at a Muon Collider

Speaker: Matthew Forslund (Stony Brook University)

Dominant background from Z-peak: distinguishing the two is crucial

3 TeV has also been done with fullsim: quite similar results (2209.01318)

The $c\bar{c}$ and gg channels are very similar, with mistagged $H\to b\bar{b}$ contributing a large background as well

How about a new scalar?

Precision Energy

INFN

Dijet invariant mass

Missing mass:

- Sharp kinematic features
- Signal-background separation
- Signal parameter determination

Han, ZL, Wang, Wang, 2009.11287, 2203.07351

Missing mass:

- Sharp kinematic features
- Signal-background separation
- Signal parameter determination

Signal-background ratio 10^-3

At lepton colliders systematics controlled to 0.1% level should be achievable but requires theory & experimental

Han, ZL, Wang, Wang, 2009.11287, 2203.07351

Missing mass:

- Sharp kinematic features
- Signal-background separation
- Signal parameter determination

Signal-background ratio 10^-3

At lepton colliders systematics controlled to 0.1% level should be achievable but requires theory & experimental

Han, ZL, Wang, Wang, 2009.11287, 2203.07351

Missing mass:

- Sharp kinematic features
- Signal-background separation
- Signal parameter determination

Signal-background ratio 10^-3

At lepton colliders systematics controlled to 0.1% level should be achievable but requires theory & experimental

Han, ZL, Wang, Wang, 2009.11287, 2203.07351

Disappearing Tracks

- Only useful for searches using charge 1 states
- Still, all higher charged states will cascade back to charge 1 states promptly
- Use all the production rates of charged states
- Mono-photon+disappearing tracks
- Beam Induced Background

Disappearing Tracks

- Only use the central tracks, |eta|<1.5
- Current design have first layer of pixel detector at 3cm (new discussion about 2cm)
- We assume at least two-hits can be measured at 5cm
- Show both pair reconstruction or single reconstruction results
- Requiring 50 signal events for discovery

$$d_T^{
m min}=5$$
 cm with $|\eta_\chi|<1.5$

$$\epsilon_{\chi}(\cos\theta, \gamma, d_T^{\min}) = \exp\left(\frac{-d_T^{\min}}{\beta_T \gamma c \tau}\right)$$

Impact of Disappearing Tracl

- Mono-photon powerful for high n-plets
- Mono-muon uniquely powerful low multiplets (Wino and Higgsinos)
- VBF dimuon large room to improve (we conservatively assumed |\eta mu|<2.5, losing lots of signals)

Impact of Disappearing Track

- Mono-photon powerful for high n-plets
- Mono-muon uniquely powerful low multiplets (Wino and Higgsinos)
- VBF dimuon large room to improve (we conservatively assumed |\eta mu|<2.5, losing lots of signals)
- Disappearing track great potential (can push to the kinematic limit)!

Another look: disappearing track

Taking the 2-track full v.s. fast simulation as an example Same number of background but slightly different signal efficiency, 1 TeV-2TeV for a Higgisino

12/16/2022

MuC Forum Report 2209.01318

Production	Decay	$\Delta\sigma/\sigma$ (%)	
		3 TeV	$10\mathrm{TeV}$
WW-fusion	bb	0.84	0.24
	cc	14	4.4
	gg	4.2	1.2
	$ au^+ au^-$	4.5	1.3
	$WW^*(jj\ell\nu)$	1.8	0.50
	$WW^*(4j)$	5.7	1.4
	$ZZ^*(4\ell)$	48	13
	$ZZ^*(jj\ell\ell)$	12	3.5
	$ZZ^*(4j)$	67	16
	$\gamma\gamma$	7.7	2.1
	$Z(jj)\gamma$	73	20
	$\mu^+\mu^-$	43	11
ZZ-fusion	bb	7.9	2.2
	$bb, (N_{\mu} \geq 2)$	2.6	0.77
	$WW^*(4j)$	49	12
	$WW^*(4j), (N_{\mu} \ge 2)$	17	4.3
tth	bb	61	53

M. Forslund, P. Meade, 2203.09425

See also discussion in Muon Smasher's Guide, <u>2103.14043</u>
T. Han, Y. Ma, K.-P. Xie, <u>2007.14300</u>;
Costanini, De Lillo, Maltoni, Mantani, Mattelaer, <u>2005.10289</u>

Production	Decay	$\Delta\sigma/\sigma~(\%)$	
		3 TeV	$10\mathrm{TeV}$
WW-fusion	bb	0.84	0.24
	cc	14	4.4
	gg	4.2	1.2
	$ au^+ au^-$	4.5	1.3
	$WW^*(jj\ell\nu)$	1.8	0.50
	$WW^*(4j)$	5.7	1.4
	$ZZ^*(4\ell)$	48	13
	$ZZ^*(jj\ell\ell)$	12	3.5
	$ZZ^*(4j)$	67	16
	$\gamma\gamma$	7.7	2.1
	$Z(jj)\gamma$	73	20
	$\mu^+\mu^-$	43	11
ZZ-fusion	bb	7.9	2.2
	$bb, (N_{\mu} \geq 2)$	2.6	0.77
	$WW^*(4j)$	49	12
	$WW^*(4j), (N_{\mu} \geq 2)$	17	4.3
tth	bb	61	53

12/16/2022

M. Forslund, P. Meade, <u>2203.09425</u>

See also discussion in Muon Smasher's Guide, <u>2103.14043</u>
T. Han, Y. Ma, K.-P. Xie, <u>2007.14300</u>;
Costanini, De Lillo, Maltoni, Mantani, Mattelaer, <u>2005.10289</u>

Production	Decay	$\Delta\sigma/\sigma$ (%)	
		3 TeV	$10\mathrm{TeV}$
WW-fusion	bb	0.84	0.24
	cc	14	4.4
	gg	4.2	1.2
	$ au^+ au^-$	4.5	1.3
	$WW^*(jj\ell\nu)$	1.8	0.50
	$WW^*(4j)$	5.7	1.4
	$ZZ^*(4\ell)$	48	13
	$ZZ^*(jj\ell\ell)$	12	3.5
	$ZZ^*(4j)$	67	16
	$\gamma\gamma$	7.7	2.1
	$Z(jj)\gamma$	73	20
	$\mu^+\mu^-$	43	11
ZZ-fusion	bb	7.9	2.2
	$bb, (N_{\mu} \geq 2)$	2.6	0.77
	$WW^*(4j)$	49	12
	$WW^*(4j), (N_{\mu} \geq 2)$	17	4.3
tth	bb	61	53

12/16/2022

M. Forslund, P. Meade, <u>2203.09425</u>

See also discussion in Muon Smasher's Guide, <u>2103.14043</u>
T. Han, Y. Ma, K.-P. Xie, <u>2007.14300</u>;
Costanini, De Lillo, Maltoni, Mantani, Mattelaer, <u>2005.10289</u>

Measuring Top Yukawa

K.F. Lyu, I. Mahbub et al., in progress.

Also so see in MSG (2103.14043).

What is LLP & Why searching for them?

Long-lived particles in the standard model:

- approximate symmetries;
- kinematic suppressions;

What is LLP & Why searching for them?

Long-lived particles in the standard model:

- approximate symmetries;
- kinematic suppressions;

For BSM particles:

- Prompt particles being actively probed;
- Many scenarios give raise to long-lived signatures:
 - SUSY (GMSB, RPV, Split, etc.)
 - Hidden Sector Dynamics

12/16/2022

But, a new experimental challenge.

non-pointing (converted) photons

displaced leptons,

LHC detectors designed for prompt signals. For LLPs:

- **Otrigger**
- **©reconstruction**
- **©standard** model background
- **®non-standard background**

emerging jets

jets

quasi-stable charged particles But, a new experimental challenge.

displaced leptons,

LHC detectors designed for prompt signals. For LLPs:

- **Strigger**
- **®reconstruction**
- **©standard model background**
- **®non-standard background**

Huge uncharted well-motivated territories to explore!

While the LHC standard BSM program continues and improves, new opportunities are shall be pioneeringly explored by theorists!

emerging jets jets quasi-stable charged particles

non-pointing

(converted) photons

A veritable Renaissance of Long-Lived Particles

MATHUSLA Codex-B AL₃X Anubis FASER SHiP NA62 SeaQuest MoEDAL' MilliQan

Central/Hard LLPs

Forward/lighter LLPs

Beamdump experiments

monopole millicharged particles The world is planning on conducting new experiments searching for these hidden long-lived particles.

Search for LLPs

Log-log open parameter space to concur

Long-Lived particles Community Report: 1903.04497

Long-Lived Particles (LLPs): timing

For a LLP community review: 1903.04497

Long-Lived Particles (LLPs): timing

Delay is a universal feature of Long-Lived Particles*

Liu, ZL, Wang, <u>1805.05957</u>

For a LLP community review: 1903.04497

12/16/2022

E.g., delayed jet

CMS search, <u>1906.06441</u> Liu, ZL, Wang, <u>1805.05957</u> 8 TeV results, ZL, Tweedie, <u>1503.05923</u> Displaced jet at 13 TeV, $39 fb^{-1}$

More to come: CMS MTD upgrade ATLAS HGTD upgrade Ecal, Muon system, HCal, timing information to be used

12/16/2022

E.g., delayed jet 10³ 10² 10 Delayed Jet analysis carried out by CMS, $139 \, fb^{-1}$ 10-10⁴ 10^{-2} Displaced jet at 13 TeV, $39 \, fb^{-1}$ 10^{-3} 10^{-4} More to come: $\sqrt{F} = 10^3 \text{ TeV}$ CMS MTD upgrade ATLAS HGTD upgrade 200 400 600 800 1000 1200 1400 1600 Ecal, Muon system, HCal, $m_{\tilde{a}}$ (GeV) timing information to be used

CMS search, 1906.06441 Liu, ZL, Wang, <u>1805.05957</u> 8 TeV results, ZL, Tweedie, <u>1503.05923</u>

26

What is the time of a jet?

Theoretically and experimentally interesting

$$t_J^{\{\text{median},\text{hardest,random}\}} = t_{\{i_m,i_h,i_r\}} = \frac{r_T}{c} \cosh \eta_{\{i_m,i_h,i_r\}}$$

$$t_J^{\text{null}} = \frac{r_T}{c} \frac{|\vec{p}_J|}{p_{T,J}} = \frac{r_T}{c} \cosh \eta_J$$

$$t_J^{\text{kinematic}} = \frac{r_T}{c} \frac{E_J}{p_{T,J}}$$

$$t_J^{\text{average}} = \frac{1}{N} \sum_{i=1}^N t_i$$

$$t_J^{p_T} = \frac{1}{p_{T,S}} \sum_{i=1}^N p_{T,i} t_i, \qquad p_{T,S} = \sum_{i=1}^N p_{T,i}$$

$$t_J^{(\alpha,\beta,\gamma)} \propto \sum_{i=1}^N (p_{T,i})^\alpha (\Delta R_i)^\beta t_i^\gamma$$

12/16/2022

The pioneering delayed jet search used median time, clearly having large room to improve.

Chiu, ZL, Low, Wang, 2109.01682

Tackle Time: what is the time of a jet?

pT-weighted time provides the best convergence, and hence the quasioptimal experimental definition of the jet time.

It is also IR-safe and calculable quantity.

Other jet time definitions spreads out driven by soft/colinear behaviors, further imprinted by geometrical effects..

$$t_J^{(\alpha,\beta,\gamma)} \propto \sum_{i \in \text{jet}} (p_{T,i})^{\alpha} (\Delta R_i)^{\beta} t_i^{\gamma}$$

Chiu, ZL, Low, Wang, 2109.01682

Late comers will be spotted easily: Higgs decays

Late comers will be spotted easily: Higgs decays

High Granularity

High Granularity Calorimeter provides both high precision in timing and position, as well as energy deposition (one sees shower).

Look for LLPs in HGCAL, Liu, ZL, Wang, Wang,

2005.10836; Displaced Trigger, Gershtein 1705.04321,

Gerstein, Kanpen, 1907.00007, Gerstein, Knapen, Redigoloendcap

HGCAL potential

Another EW BSM example: Heavy Neutral Leptons

Another EW BSM example: Heavy Neutral Leptons

Another EW BSM example: Heavy Neutral Leptons

Open & Anomalies

- Open to search for anomalies;
- (Must) open for interpretations;
- Open to be surprised

Zeroth Order

Let's get a high-energy muon collider running!

- Energy Resolution (comparable to current)
- Granularity (comparable to current)

(reasonable detector performance would deliver baseline physics goals: dive deeply into the 10~TeV realm.)

Demands? (randomly ordered)

- o) great energy resolution for all SM precisions;
- forward muon;
- additional long-lived particles trigger;
- dark showers;
- triggerless data possible? At least a triggerless readout?
- disappearting track (low threshold and low bkg);
- good missing energy measurements?
- anomaly detection (lepton collider environment make it stand out more sharply, let's use the clean data!)
- precision timing
- On beam: high energy & high Lumi (also low energy s-channel with low beam energy spread).

The Dream Machine

International muon collider collaboration:

https://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=MUONCOLLI DERDETECTOR-PHYSICS

Muon Collider Forum: SNOWMASS-MUON-COLLIDER-FORUM@FNAL.GOV at https://snowmass21.org/energy/start#communications.

Physics Demands

Muon Collider Workshop

Zhen Liu

Thank you!

12/16/2022

Physics Driver

36