Single Higgs Precision at a Muon Collider

Matthew Forslund
with Patrick Meade
C. N. Yang Institute for Theoretical Physics

December 15, 2022

The current status (J. de Blas et al. 1905.03764)

$$
\begin{aligned}
& \kappa-0: \\
& B R_{B S M}=0 \\
& \kappa_{i} \equiv g_{i} / g_{i}^{S M}
\end{aligned}
$$

$\begin{gathered} \kappa-0 \\ \text { fit } \end{gathered}$	$\left\|\begin{array}{c} \mathrm{HL}- \\ \mathrm{LHC} \end{array}\right\|$	LHeC	$\left\lvert\, \begin{array}{ll} \mathrm{HE} E-\mathrm{LHC} \\ \mathrm{~S} 2 & \mathrm{~S} 2^{\prime} \end{array}\right.$	250	$\begin{gathered} \text { ILC } \\ 500 \end{gathered}$	1000		$\begin{aligned} & \text { CLIC } \\ & 1500 \end{aligned}$	3000	CEPC	$\left\|\begin{array}{c} \text { FCC-ee } \\ 240 \end{array} 365\right\|$	FCC-ee/ eh/hh
κ_{W}	1.7	0.75	1.40 .98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.30 .43	0.14
κ_{z}	1.5	1.2	1.30 .9	0.2	0.23	0.22	0.5	0.26	0.23	0.14	0.200 .17	0.12
$\kappa \mathrm{g}$	2.3	3.6	1.91 .2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	$\begin{array}{ll}1.7 & 1.0\end{array}$	0.49
κ_{γ}	1.9	7.6	$\begin{array}{ll}1.6 & 1.2\end{array}$	6.7	3.4	1.9	98	5.0	2.2	3.7	4.73 .9	0.29
$\kappa_{z \gamma}$	10.	-	5.73 .8	99*	86*	85*	120*	15	6.9	8.2	81* 75*	0.69
κ_{c}	-	4.1	- -	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.81 .3	0.95
κ_{t}	3.3	-	$\begin{array}{lll}2.8 & 1.7\end{array}$	-	6.9	1.6	-	-	2.7	-	- -	1.0
κ_{b}	3.6	2.1	3.22 .3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.30 .67	0.43
κ_{μ}	4.6	-	2.51 .7	15	9.4	6.2	320*	13	5.8	8.9	108.9	0.41
κ_{τ}	1.9	3.3	1.51 .1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.40 .73	0.44

Single Higgs Production at Muon Colliders (2203.09425)

High energies dominated by $W W \rightarrow H$ and $Z Z \rightarrow H$.

Forward Muons

To distinguish between $W W$-fusion and $Z Z$-fusion, must be able to tag the forward muons beyond the $|\eta| \approx 2.5$ nozzles

For $Z Z$-fusion, we include results considering tagging up to $|\eta| \leq 6$.

Event Generation and Detector Assumptions

Event generation is done using MadGraph5 and showering with Pythia8

Event Generation and Detector Assumptions

Event generation is done using MadGraph5 and showering with Pythia8

Use Delphes fast sim with the muon collider card for detector

Event Generation and Detector Assumptions

Event generation is done using MadGraph5 and showering with Pythia8
Use Delphes fast sim with the muon collider card for detector
2-body final states required to have both particles satisfying $|\eta|<2.5$ and $p_{T}>40 \mathrm{GeV}$

- Loosen to $p_{T}>20 \mathrm{GeV}$ for non-hadronic 4-body final states.

Event Generation and Detector Assumptions

Event generation is done using MadGraph5 and showering with Pythia8
Use Delphes fast sim with the muon collider card for detector
2-body final states required to have both particles satisfying $|\eta|<2.5$ and $p_{T}>40 \mathrm{GeV}$

- Loosen to $p_{T}>20 \mathrm{GeV}$ for non-hadronic 4-body final states.

Apply flavour tagging, additional process dependent cuts, estimate precision using $\frac{\Delta \sigma}{\sigma}=\frac{\sqrt{S+B}}{S}$

Event Generation and Detector Assumptions

Event generation is done using MadGraph5 and showering with Pythia8
Use Delphes fast sim with the muon collider card for detector
2-body final states required to have both particles satisfying $|\eta|<2.5$ and $p_{T}>40 \mathrm{GeV}$

- Loosen to $p_{T}>20 \mathrm{GeV}$ for non-hadronic 4-body final states.

Apply flavour tagging, additional process dependent cuts, estimate precision using $\frac{\Delta \sigma}{\sigma}=\frac{\sqrt{S+B}}{S}$ Without forward tagging, combine WWF and ZZF- otherwise, consider separately

Hadronic Processes: $b \bar{b}$

10 TeV

Precision (\%)

Energy	Combination	WWF	ZZF
3 TeV	0.76	0.80	2.6
10 TeV	0.21	0.22	0.77

Hadronic Processes: $b \bar{b}$

10 TeV

Dominant background from Z-peak: distinguishing the two is crucial

Hadronic Processes: $b \bar{b}$

Dominant background from Z-peak: distinguishing the two is crucial

3 TeV has also been done with fullsim: quite similar results (2209.01318)

Hadronic Processes: $b \bar{b}$

Energy	Combination	WWF	ZZF
3 TeV	0.76	0.80	2.6
10 TeV	0.21	0.22	0.77

Dominant background from Z-peak: distinguishing the two is crucial

3 TeV has also been done with fullsim: quite similar results (2209.01318)

The $c \bar{c}$ and $g g$ channels are very similar, with mistagged $H \rightarrow b \bar{b}$ contributing a large background as well

$W W^{*}, Z Z^{*}$

For $W W^{*}$ and $Z Z^{*}$, we generate the full $2 \rightarrow 6$ backgrounds such as $\mu \mu \rightarrow \nu \nu \ell \ell j j$ using MadGraph.

$W W^{*}, Z Z^{*}$

For $W W^{*}$ and $Z Z^{*}$, we generate the full $2 \rightarrow 6$ backgrounds such as $\mu \mu \rightarrow \nu \nu \ell \ell j j$ using MadGraph.

Consider $W W^{*} \rightarrow(\ell \nu j j, 4 j), Z Z^{*} \rightarrow(4 \ell, 2 \ell 2 j, 4 j)$

$W W^{*}, Z Z^{*}$

For $W W^{*}$ and $Z Z^{*}$, we generate the full $2 \rightarrow 6$ backgrounds such as $\mu \mu \rightarrow \nu \nu \ell \ell j j$ using MadGraph.

Consider $W W^{*} \rightarrow(\ell \nu j j, 4 j), Z Z^{*} \rightarrow(4 \ell, 2 \ell 2 j, 4 j)$
The $4 j$ final states have a large background from $H \rightarrow b \bar{b}, g g$ from exclusive clustering, completely overwhelming all other backgrounds.

$W W^{*}, Z Z^{*}$

For $W W^{*}$ and $Z Z^{*}$, we generate the full $2 \rightarrow 6$ backgrounds such as $\mu \mu \rightarrow \nu \nu \ell \ell j j$ using MadGraph.

Consider $W W^{*} \rightarrow(\ell \nu j j, 4 j), Z Z^{*} \rightarrow(4 \ell, 2 \ell 2 j, 4 j)$
The $4 j$ final states have a large background from $H \rightarrow b \bar{b}, g g$ from exclusive clustering, completely overwhelming all other backgrounds.

Number of Events

Process	3 TeV				10 TeV			
	$4 j$	$2 j 2 \ell$	4ℓ	$4 j$	$2 j 2 \ell$	4ℓ		
$\mu^{+} \mu^{-} \rightarrow \nu_{\mu} \bar{\nu}_{\mu} H ; H \rightarrow Z Z^{*} \rightarrow X$	124	103	5	2910	1590	66		
$\mu^{+} \mu^{-} \rightarrow \mu^{+} \mu^{-} H ; H \rightarrow Z Z^{*} \rightarrow X$	3	9	0	315	151	8		
Others	6700	50	0	208000	1370	2		

κ-0 Fit Result (With Fwd Tagging) [\%]		
	$3 \mathrm{TeV} @ 1 \mathrm{ab}^{-1}$	10 TeV @ $10 \mathrm{ab}^{-1}$
κ_{W}	0.37	0.10
κ_{Z}	1.2	0.34
κ_{g}	1.6	0.45
κ_{γ}	3.2	0.84
$\kappa_{Z_{\gamma}}$	21	5.5
κ_{c}	5.8	1.8
κ_{t}	34	53
κ_{b}	0.84	0.23
κ_{μ}	14	2.9
κ_{τ}	2.1	0.59

Assume no BSM branching ratios

$$
\kappa_{i}=g_{i} / g_{i}^{S M}
$$

κ-0 Fit Result (With Fwd Tagging) [\%]

	3 TeV @ 1 ab-1	10 TeV @ 10 ab^{-1}
κ_{W}	0.37	0.10
κ_{Z}	1.2	0.34
κ_{g}	1.6	0.45
κ_{γ}	3.2	0.84
$\kappa_{Z_{\gamma}}$	21	5.5
κ_{c}	5.8	1.8
κ_{t}	34	53
κ_{b}	0.84	0.23
κ_{μ}	14	2.9
κ_{τ}	2.1	0.59

Assume no BSM branching ratios

$\kappa_{i}=g_{i} / g_{i}^{S M}$
Removing forward tagging mainly affects κ_{Z} :

- $1.2 \% \rightarrow 5.1 \%$
- $0.34 \% \rightarrow 1.4 \%$

Where do we stand? (with forward tags)

$\begin{gathered} \kappa-0 \\ \text { fit } \end{gathered}$	$\left\|\begin{array}{l} \mathrm{HL}- \\ \mathrm{LHC} \end{array}\right\|$	LHeC	$\left\|\begin{array}{ll} H E-L H C \\ S 2 & S 2^{\prime} \end{array}\right\|$		$\begin{aligned} & \text { ILC } \\ & 500 \end{aligned}$			$\begin{aligned} & \text { CLIC } \\ & 1500 \end{aligned}$	3000	CEPC	$\left\|\begin{array}{cc} \text { FCC-ee } \\ 240 & 365 \end{array}\right\|$	$\begin{array}{\|c\|} \text { FCC-ee/ } \\ \text { eh/hh } \end{array}$		10000
κ_{W}	1.7	0.75	1.40 .98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.30 .43	0.14	0.37	0.10
κ_{Z}	1.5	1.2	1.30 .9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.200 .17	0.12	1.2	0.34
κ_{g}	2.3	3.6	1.91 .2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.71 .0	0.4	1.6	0.
κ_{γ}	1.9	7.6	1.61 .2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.73 .9	0.29	3.2	0.84
$\kappa_{Z \gamma}$	10.	-	5.73 .8	99*	86*	85*	120*	15	6.9	8.2	81* 75*	0.69	21	5.5
κ_{c}	-	4.1	- -	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.81 .3	0.95	5.8	1.8
κ_{t}	3.3	-	2.81 .7	-	6.9	1.6	-	-	2.7			1.0	34	53
κ_{b}	3.6	2.1	3.22 .3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.30 .67	0.43	0.84	0.23
κ_{μ}	4.6	-	2.51 .7	15	9.4	6.2	320*	13		8.9	$\begin{array}{ll}10 & 8.9\end{array}$	0.41	14	2.9
κ_{τ}	1.9	3.3	1.51 .1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.40 .73	0.44	2.1	0.59

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $B R_{B S M}>0$:

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $B R_{B S M}>0$:

$$
\Gamma_{H} / \Gamma_{H}^{S M}=\kappa^{2} /\left(1-B R_{B S M}\right)
$$

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $B R_{B S M}>0$:

$$
\Gamma_{H} / \Gamma_{H}^{S M}=\kappa^{2} /\left(1-B R_{B S M}\right) \rightarrow \mu_{i \rightarrow f}^{\text {on-shell }} \equiv \sigma_{i \rightarrow f} / \sigma_{i \rightarrow f}^{S M}=\kappa^{2}\left(1-B R_{B S M}\right)
$$

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $B R_{B S M}>0$:

$$
\Gamma_{H} / \Gamma_{H}^{S M}=\kappa^{2} /\left(1-B R_{B S M}\right) \rightarrow \mu_{i \rightarrow f}^{\text {on-shell }} \equiv \sigma_{i \rightarrow f} / \sigma_{i \rightarrow f}^{S M}=\kappa^{2}\left(1-B R_{B S M}\right)
$$

So long as $\kappa>1$, there is always a possible $B R_{B S M}$ to make all $\mu_{i}^{o n-s h e l l}=1$.

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $B R_{B S M}>0$:

$$
\Gamma_{H} / \Gamma_{H}^{S M}=\kappa^{2} /\left(1-B R_{B S M}\right) \rightarrow \mu_{i \rightarrow f}^{\text {on-shell }} \equiv \sigma_{i \rightarrow f} / \sigma_{i \rightarrow f}^{S M}=\kappa^{2}\left(1-B R_{B S M}\right)
$$

So long as $\kappa>1$, there is always a possible $B R_{B S M}$ to make all $\mu_{i}^{o n-s h e l l}=1$.
Constraining the Higgs width is necessary to remove this degeneracy.

Caveat: the Higgs width

The κ-precisions presented before rely on $B R_{\text {inv }}=B R_{\text {exo }}=0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $B R_{B S M}>0$:

$$
\Gamma_{H} / \Gamma_{H}^{S M}=\kappa^{2} /\left(1-B R_{B S M}\right) \rightarrow \mu_{i \rightarrow f}^{\text {on-shell }} \equiv \sigma_{i \rightarrow f} / \sigma_{i \rightarrow f}^{S M}=\kappa^{2}\left(1-B R_{B S M}\right)
$$

So long as $\kappa>1$, there is always a possible $B R_{B S M}$ to make all $\mu_{i}^{\text {on-shell }}=1$.
Constraining the Higgs width is necessary to remove this degeneracy.
For a width precision of $\Delta \Gamma$, can't obtain a coupling precision better than $\Delta \kappa \sim(1 / 4) \Delta \Gamma$.

Constraining Γ_{H}

There are three ways to constrain the width

Constraining Γ_{H}

There are three ways to constrain the width

1. Perform a lineshape scan ($125 \mathrm{GeV} \mu^{+} \mu^{-}: 2203.04324$ (J. de Blas et al.))

Constraining Γ_{H}

There are three ways to constrain the width

1. Perform a lineshape scan ($125 \mathrm{GeV} \mu^{+} \mu^{-}: 2203.04324$ (J. de Blas et al.))

Only possible at $s=m_{H}^{2}$

Constraining Γ_{H}

There are three ways to constrain the width

1. Perform a lineshape scan ($125 \mathrm{GeV} \mu^{+} \mu^{-}: 2203.04324$ (J. de Blas et al.)) Only possible at $s=m_{H}^{2}$
2. Measure the inclusive production cross section to directly constrain a $\kappa_{i}\left(e^{+} e^{-}\right)$

Constraining Γ_{H}

There are three ways to constrain the width

1. Perform a lineshape scan ($125 \mathrm{GeV} \mu^{+} \mu^{-}: 2203.04324$ (J. de Blas et al.)) Only possible at $s=m_{H}^{2}$
2. Measure the inclusive production cross section to directly constrain a $\kappa_{i}\left(e^{+} e^{-}\right)$

$$
\mu_{\text {Incl }} \equiv \sigma_{\text {Incl }} / \sigma_{\text {Incl }}^{S M}=\kappa^{2} \rightarrow \mu_{i}^{\text {on-shell }} / \mu_{\text {Incl }}=\left(1-B R_{B S M}\right)
$$

Constraining Γ_{H}

There are three ways to constrain the width

1. Perform a lineshape scan ($125 \mathrm{GeV} \mu^{+} \mu^{-}: 2203.04324$ (J. de Blas et al.)) Only possible at $s=m_{H}^{2}$
2. Measure the inclusive production cross section to directly constrain a $\kappa_{i}\left(e^{+} e^{-}\right)$

$$
\mu_{\text {Incl }} \equiv \sigma_{\text {Incl }} / \sigma_{\text {Incl }}^{S M}=\kappa^{2} \rightarrow \mu_{i}^{\text {on-shell }} / \mu_{\text {Incl }}=\left(1-B R_{B S M}\right)
$$

3. Indirectly constrain (LHC)

Constraining Γ_{H}

There are three ways to constrain the width

1. Perform a lineshape scan ($125 \mathrm{GeV} \mu^{+} \mu^{-}: 2203.04324$ (J. de Blas et al.)) Only possible at $s=m_{H}^{2}$
2. Measure the inclusive production cross section to directly constrain a $\kappa_{i}\left(e^{+} e^{-}\right)$

$$
\mu_{\text {Incl }} \equiv \sigma_{\text {Incl }} / \sigma_{\text {Incl }}^{S M}=\kappa^{2} \rightarrow \mu_{i}^{\text {on-shell }} / \mu_{\text {Incl }}=\left(1-B R_{B S M}\right)
$$

3. Indirectly constrain (LHC)

Let's look in more detail

Measuring $\sigma_{\text {lncl }}$

At $e^{+} e^{-}$colliders, one measures the inclusive $e^{+} e^{-} \rightarrow Z H$ cross section via the recoil mass method:

Assuming one knows $E_{C M}$, then by kinematics

$$
m_{H}^{2}=s+m_{Z}^{2}-2 E_{Z} \sqrt{s}
$$

Measuring $\sigma_{\text {lncl }}$

At $e^{+} e^{-}$colliders, one measures the inclusive $e^{+} e^{-} \rightarrow Z H$ cross section via the recoil mass method:

Assuming one knows $E_{C M}$, then by kinematics
$m_{H}^{2}=s+m_{Z}^{2}-2 E_{Z} \sqrt{s}$
\rightarrow Can measure $\sigma_{\text {Incl }}^{Z H}$ by only measuring the Z decay products!

Measuring $\sigma_{\text {lncl }}$

At $e^{+} e^{-}$colliders, one measures the inclusive $e^{+} e^{-} \rightarrow Z H$ cross section via the recoil mass method:

Assuming one knows $E_{C M}$, then by kinematics

$$
m_{H}^{2}=s+m_{Z}^{2}-2 E_{Z} \sqrt{s}
$$

\rightarrow Can measure $\sigma_{\text {Incl }}^{Z H}$ by only measuring the Z decay products!
However, this technique relies on a precision measurement of $E_{Z} \ldots$

Measuring $\sigma_{\text {lncl }}$

At $e^{+} e^{-}$colliders, one measures the inclusive $e^{+} e^{-} \rightarrow Z H$ cross section via the recoil mass method:

Assuming one knows $E_{C M}$, then by kinematics

$$
m_{H}^{2}=s+m_{Z}^{2}-2 E_{Z} \sqrt{s}
$$

\rightarrow Can measure $\sigma_{\text {Incl }}^{Z H}$ by only measuring the Z decay products!
However, this technique relies on a precision measurement of $E_{Z} \ldots$
Nevertheless, could this be done at a muon collider via the forward muons in $\mu^{+} \mu^{-} H$?

Can we do this for $\mu^{+} \mu^{-} \rightarrow \mu^{+} \mu^{-} H$?

Not really... would need unrealistically good energy resolution in forward detectors

LHC techniques

We are left with one option: indirectly constrain as at the LHC.

LHC techniques

We are left with one option: indirectly constrain as at the LHC.
Off-shell, the width doesn't contribute to the Higgs diagrams, so one can constrain it:

$$
\sigma_{i \rightarrow H^{*} \rightarrow f}^{\text {off-shell }}=\kappa^{4} \sigma_{S M}^{\text {off-shell }} \rightarrow \mu_{i \rightarrow H^{*} \rightarrow f}^{\text {off-shell }}=\kappa^{4}, \quad \frac{\mu_{i \rightarrow H^{*} \rightarrow f}^{\text {off }- \text { shell }}}{\mu_{i \rightarrow H \rightarrow f}^{\text {on-shell }}}=\frac{\Gamma_{H}}{\Gamma_{H}^{S M}} \equiv \xi=\frac{\kappa^{2}}{1-B R_{B S M}}
$$

so that $\mu^{\text {off }- \text { shell }}=1$ and $\mu^{\text {on-shell }}=1$ cannot simultaneously be satisfied if $B R_{B S M}>0$.

LHC techniques

We are left with one option: indirectly constrain as at the LHC.
Off-shell, the width doesn't contribute to the Higgs diagrams, so one can constrain it:
so that $\mu^{\text {off }- \text { shell }}=1$ and $\mu^{\text {on-shell }}=1$ cannot simultaneously be satisfied if $B R_{B S M}>0$. (This would be an off-shell coupling measurement, not a width measurement).

LHC techniques

We are left with one option: indirectly constrain as at the LHC.
Off-shell, the width doesn't contribute to the Higgs diagrams, so one can constrain it:
so that $\mu^{\text {off-shell }}=1$ and $\mu^{\text {on-shell }}=1$ cannot simultaneously be satisfied if $B R_{B S M}>0$. (This would be an off-shell coupling measurement, not a width measurement).

However, the rate is much less off-shell... Exploit perturbative unitarity!

LHC techniques

We are left with one option: indirectly constrain as at the LHC.
Off-shell, the width doesn't contribute to the Higgs diagrams, so one can constrain it:
so that $\mu^{\text {off-shell }}=1$ and $\mu^{\text {on-shell }}=1$ cannot simultaneously be satisfied if $B R_{B S M}>0$. (This would be an off-shell coupling measurement, not a width measurement).

However, the rate is much less off-shell... Exploit perturbative unitarity! If $\kappa V \neq 1$, then $W_{L} W_{L} \rightarrow W_{L} W_{L}$ scattering grows with energy, $\sigma \propto s^{2}$

High energy $V V \rightarrow V V$ scattering is highly sensitive to κ_{V} !

Off-shell $V V \rightarrow V V$ scattering

Consider $4 j, \ell^{ \pm} \nu_{\ell j j}$, and $\ell^{+} \ell^{-} j j$

Off-shell $V V \rightarrow V V$ scattering

Consider $4 j, \ell^{ \pm} \nu_{\ell j}$, and $\ell^{+} \ell^{-} j j$
Stricter cuts than on-shell, BIB shouldn't matter much

Off-shell $V V \rightarrow V$ scattering

Consider $4 j, \ell^{ \pm} \nu_{\ell j j}$, and $\ell^{+} \ell^{-} j j$

10 TeV

(Here $\left.\xi \equiv \mu^{\text {off }- \text { shell }} / \mu^{\text {on-shell }}\right)$

Off-shell $V V \rightarrow V V$ scattering

Consider $4 j, \ell^{ \pm} \nu_{\ell j j}$, and $\ell^{+} \ell^{-} j j$

10 TeV

(Here $\xi \equiv \mu^{\text {off }- \text { shell }} / \mu^{\text {on-shell }}$)

Comparisons (combined with HL-LHC)

Blue shaded: forward tagging

Purple shaded: 5 vs $20 / a b$

A loophole in the off-shell measurement

Even if both the on-shell and off-shell regions appear SM-like, there is still a loophole.

A loophole in the off-shell measurement

Even if both the on-shell and off-shell regions appear SM-like, there is still a loophole.

We assumed the off-shell region scaled like the SM, but this is not true if additional scalars contribute to electroweak symmetry breaking.

A loophole in the off-shell measurement

Even if both the on-shell and off-shell regions appear SM-like, there is still a loophole.

We assumed the off-shell region scaled like the SM, but this is not true if additional scalars contribute to electroweak symmetry breaking.

When these additional scalars contribute to $V V \rightarrow V V$, combination with SM will restore perturbative unitarity of off-shell region, making it appear to be SM , even if $\kappa V \neq 1$.

A loophole in the off-shell measurement

Even if both the on-shell and off-shell regions appear SM-like, there is still a loophole.

We assumed the off-shell region scaled like the SM, but this is not true if additional scalars contribute to electroweak symmetry breaking.

When these additional scalars contribute to $V V \rightarrow V V$, combination with SM will restore perturbative unitarity of off-shell region, making it appear to be SM , even if $\kappa V \neq 1$.

This restoration only occurs above resonance: must be lighter than our off-shell analysis window!

Model requirements

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

Model requirements

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

1. The model must generate $\kappa_{V}>1$ and have a $B R_{B S M}$ (flat on-shell)

Model requirements

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

1. The model must generate $\kappa_{V}>1$ and have a $B R_{B S M}$ (flat on-shell)
2. There must be a regime where $\kappa_{V} \approx \kappa_{f} \approx \kappa_{\gamma}>1$ (flat on-shell)

Model requirements

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

1. The model must generate $\kappa_{V}>1$ and have a $B R_{B S M}$ (flat on-shell)
2. There must be a regime where $\kappa_{V} \approx \kappa_{f} \approx \kappa_{\gamma}>1$ (flat on-shell)
3. There must be new electroweak charged scalars lighter than a few TeV that contribute to EWSB (off-shell loophole)

Model requirements

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

1. The model must generate $\kappa_{V}>1$ and have a $B R_{B S M}$ (flat on-shell)
2. There must be a regime where $\kappa_{V} \approx \kappa_{f} \approx \kappa_{\gamma}>1$ (flat on-shell)
3. There must be new electroweak charged scalars lighter than a few TeV that contribute to EWSB (off-shell loophole)
4. The new physics must be custodially symmetric at tree-level (off-shell loophole)

Model requirements

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

1. The model must generate $\kappa_{V}>1$ and have a $B R_{B S M}$ (flat on-shell)
2. There must be a regime where $\kappa_{V} \approx \kappa_{f} \approx \kappa_{\gamma}>1$ (flat on-shell)
3. There must be new electroweak charged scalars lighter than a few TeV that contribute to EWSB (off-shell loophole)
4. The new physics must be custodially symmetric at tree-level (off-shell loophole)
5. Direct search constraints must be satisfied (both)

Higher multiplet scalars

One of the only ways to generate a $\kappa_{V}>1$ is by adding scalar multiplets larger than doublets that contribute to EWSB.
(2HDMs can have $\kappa_{f}>1$, but not κ_{V})

Higher multiplet scalars

One of the only ways to generate a $\kappa_{V}>1$ is by adding scalar multiplets larger than doublets that contribute to EWSB.
(2HDMs can have $\kappa_{f}>1$, but not κ_{V})

To satisfy electroweak precision ($\rho=1$), can only be a septet with $Y=2$ or a Georgi-Machacek model

Higher multiplet scalars

One of the only ways to generate a $\kappa_{V}>1$ is by adding scalar multiplets larger than doublets that contribute to EWSB.
(2HDMs can have $\kappa_{f}>1$, but not κ_{V})

To satisfy electroweak precision ($\rho=1$), can only be a septet with $Y=2$ or a Georgi-Machacek model

In either case, there would be many new electroweak charged scalar states lighter than a few TeV to search for directly, which muon colliders are great at!

Searching for light states from $\mu^{+} \mu^{-} H$

Since a flat direction requires a $B R_{B S M}$, can constrain it directly as well. For example, suppose that $B R_{B S M}=B R_{\text {inv }}$ (all invisible decays).

Searching for light states from $\mu^{+} \mu^{-} H$

Since a flat direction requires a $B R_{B S M}$, can constrain it directly as well. For example, suppose that $B R_{B S M}=B R_{i n v}$ (all invisible decays).

Try to search for events in $\mu^{+} \mu^{-} H$ with no observed particles other than the forward $\mu^{+} \mu^{-}$

Searching for light states from $\mu^{+} \mu^{-} H$

Since a flat direction requires a $B R_{B S M}$, can constrain it directly as well. For example, suppose that $B R_{B S M}=B R_{\text {inv }}$ (all invisible decays).

Try to search for events in $\mu^{+} \mu^{-} H$ with no observed particles other than the forward $\mu^{+} \mu^{-}$
For the default p_{T} resolution of 10%, can obtain a 2σ constraint of $0.34 \%-2.2 \%$ on $\kappa_{Z}^{2} B R_{\text {inv }}$ depending on the maximum η reach ($6-4.5$)

Searching for light states from $\mu^{+} \mu^{-} H$

Since a flat direction requires a $B R_{B S M}$, can constrain it directly as well. For example, suppose that $B R_{B S M}=B R_{\text {inv }}$ (all invisible decays).

Try to search for events in $\mu^{+} \mu^{-} H$ with no observed particles other than the forward $\mu^{+} \mu^{-}$
For the default p_{T} resolution of 10%, can obtain a 2σ constraint of $0.34 \%-2.2 \%$ on $\kappa_{Z}^{2} B R_{\text {inv }}$ depending on the maximum η reach ($6-4.5$)

For worse p_{T} resolutions, $\mu^{+} \mu^{-} \rightarrow \mu^{+} \mu^{-}$begins to leak in at a high rate... highly dependent on the forward detector properties

Searching for light states from $\mu^{+} \mu^{-} H$

Since a flat direction requires a $B R_{B S M}$, can constrain it directly as well. For example, suppose that $B R_{B S M}=B R_{\text {inv }}$ (all invisible decays).

Try to search for events in $\mu^{+} \mu^{-} H$ with no observed particles other than the forward $\mu^{+} \mu^{-}$
For the default p_{T} resolution of 10%, can obtain a 2σ constraint of $0.34 \%-2.2 \%$ on $\kappa_{Z}^{2} B R_{\text {inv }}$ depending on the maximum η reach ($6-4.5$)

For worse p_{T} resolutions, $\mu^{+} \mu^{-} \rightarrow \mu^{+} \mu^{-}$begins to leak in at a high rate... highly dependent on the forward detector properties

Further study necessary to see if this is feasible or not

Searching for light states

Since $\mu^{+} \mu^{-} H$ is dependent on forward tagging capabilities, what can we do without it?

Searching for light states

Since $\mu^{+} \mu^{-} H$ is dependent on forward tagging capabilities, what can we do without it?
Can search for excesses in associated production modes:
$\gamma H, W^{ \pm} H \rightarrow \ell^{ \pm} \nu_{\ell} H, Z H \rightarrow \ell^{+} \ell^{-} H$, and combined $\left(W^{ \pm}, Z\right) H \rightarrow j j H$

Searching for light states

Since $\mu^{+} \mu^{-} H$ is dependent on forward tagging capabilities, what can we do without it?
Can search for excesses in associated production modes:
$\gamma H, W^{ \pm} H \rightarrow \ell^{ \pm} \nu_{\ell} H, Z H \rightarrow \ell^{+} \ell^{-} H$, and combined $\left(W^{ \pm}, Z\right) H \rightarrow j j H$
Perform cuts similar to on-shell, fit each process to κ_{W}, κ_{Z} to include interference, similar to the off-shell analysis

Searching for light states

Since $\mu^{+} \mu^{-} H$ is dependent on forward tagging capabilities, what can we do without it?
Can search for excesses in associated production modes:
$\gamma H, W^{ \pm} H \rightarrow \ell^{ \pm} \nu_{\ell} H, Z H \rightarrow \ell^{+} \ell^{-} H$, and combined $\left(W^{ \pm}, Z\right) H \rightarrow j j H$
Perform cuts similar to on-shell, fit each process to κ_{W}, κ_{Z} to include interference, similar to the off-shell analysis

All depend on κ_{W}, κ_{Z}, and $B R_{i n v}$: must do the full fit to see impact

Including this in the fit

Conclusion

In the κ - 0 framework, $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is highly competitive with other future colliders.

Conclusion

In the κ-0 framework, $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is highly competitive with other future colliders.
Beyond κ-0, a $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is still comparable to a $250 \mathrm{GeV} e^{+} e^{-}$or $125 \mathrm{GeV} \mu^{+} \mu^{-}$ collider only using off-shell coupling constraints, with more model dependence.

Conclusion

In the κ-0 framework, $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is highly competitive with other future colliders.
Beyond κ-0, a $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is still comparable to a $250 \mathrm{GeV} e^{+} e^{-}$or $125 \mathrm{GeV} \mu^{+} \mu^{-}$ collider only using off-shell coupling constraints, with more model dependence.

Invalidating the off-shell measurement requires electroweak charged scalars and a $B R_{B S M}$, which can both be searched for

Conclusion

In the κ-0 framework, $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is highly competitive with other future colliders.
Beyond κ-0, a $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is still comparable to a $250 \mathrm{GeV} e^{+} e^{-}$or $125 \mathrm{GeV} \mu^{+} \mu^{-}$ collider only using off-shell coupling constraints, with more model dependence.

Invalidating the off-shell measurement requires electroweak charged scalars and a $B R_{B S M}$, which can both be searched for

A $3 \mathrm{TeV} \mu^{+} \mu^{-}$collider cannot effectively constrain the width, even indirectly, beyond what the LHC can do.

Conclusion

In the $\kappa-0$ framework, $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is highly competitive with other future colliders.
Beyond κ-0, a $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider is still comparable to a $250 \mathrm{GeV} e^{+} e^{-}$or $125 \mathrm{GeV} \mu^{+} \mu^{-}$ collider only using off-shell coupling constraints, with more model dependence.

Invalidating the off-shell measurement requires electroweak charged scalars and a $B R_{B S M}$, which can both be searched for

A $3 \mathrm{TeV} \mu^{+} \mu^{-}$collider cannot effectively constrain the width, even indirectly, beyond what the LHC can do.

Great complementary between a $10 \mathrm{TeV} \mu^{+} \mu^{-}$collider and $e^{+} e^{-}$or $125 \mathrm{GeV} \mu^{+} \mu^{-}$colliders, since they have different dominant production modes.

BACKUPS

Flavour Tagging

b-tagging is done using the tight working point (50\%) inspired by CLIC (1812.07337)

- c-quark mistagging rate $\leq 3 \%$
- light quark mistagging rate $\leq 0.5 \%$

For c-tagging, we use the tagging rates of ILC reported in (1506.08371). We take 20% as our working point to match the Smasher's Guide.

- b-quark mistagging rate of flat 1.3%
- light quark mistagging rate of flat 0.66%

For $H \rightarrow \tau \tau$, we take a τ-tagging efficiency of 80% with a jet mistag rate of 2%.

Event Selection $(b \bar{b}, c \bar{c}, g g(+s \bar{s}))$

Apply an additional correction to b-jet p_{T} to account for energy losses during reconstruction (1811.02572)

- Smoothly scales 4-momentum by up to ~ 1.16 at low p_{T}
- Rough approximation to ATLAS ptcorr correction (1708.03299)
- Reproduces a Higgs peak centered near 125 GeV

Apply a similar correction to c-jets
Events that pass the P_{T} and η cuts are then selected based on an invariant mass cut:
$-100<M_{b \bar{b}}<150$ for $b \bar{b}$

- $105<M_{c \bar{c}}<145$ for $c \bar{c}$
$-95<M_{j j}<135$ for $g g(+s \bar{s})$

Estimating the Effects of the BIB

Worse JER based on current fullsim- additional spreading roughly doubles the background contribution from the Z peak: $0.76 \% \rightarrow 0.86 \%$ precision, quite comparable to fullsim result (2209.01318).

$c \bar{c}, g g(+s \bar{s}), \tau^{+} \tau^{-}$

The dominant backgrounds for $c \bar{c}$ and $g g(+s \bar{s})$ are mostly the same as for $b \bar{b}$ and primarily removed via an $M_{j j}$ cut
$H \rightarrow b \bar{b}$ becomes a large irreducible background
Following the same procedure as in $b \bar{b}$, we obtain results for $c \bar{c}$ and $g g(+s \bar{s})$:

Precision (\%)		
Energy	$c \bar{c}$	$g g(+s \bar{s})$
3 TeV	13	3.3
10 TeV	4.0	0.89

$\tau^{+} \tau^{-}$follows a similar strategy with similar backgrounds, adding $\theta_{\tau \tau}>15(20)$ cuts, to get 4.0(1.1)\% precision.

$\gamma \gamma$ and Z_{γ}

For $\gamma \gamma$, require no isolated leptons and a cut of $122<M_{\gamma \gamma}<128$.

The $Z(j j) \gamma$ process has similar backgrounds as the hadronic modes, but with more complicated cuts.

$t \bar{t} H$

This process requires special care: VBF at 10 TeV vs s-chan at 3 , the cross section is small, and the $t \bar{t}$ background is large.

Select events with four b-tagged $p_{T}>20$ jets and ≤ 1 leptons, apply various cuts on $E_{W, t, H}$, $m_{W, t, H}$

Obtain a precision of 61% at 3 TeV and 53% at 10 TeV
(Different y_{t} dependence at 3 and 10 TeV)

Number of Events

Process	3 TeV			10 TeV	
	SL	Had	SL	Had	
$t \bar{t} H ; H \rightarrow b \bar{b}$	34	63	49	59	
$t \bar{t} H ; H \nrightarrow b \bar{b}$	9	21	6	11	
$t \bar{t}$	609	2070	502	1440	
$t \bar{t} Z$	207	362	530	663	
$t \bar{t} b \bar{b}$	9	21	15	18	

κ-0 Fit Result [\%]

	$\mu^{+} \mu^{-}$		$+\mathrm{HL}-\mathrm{LHC}$		$+\mathrm{HL}-\mathrm{LHC}+250 \mathrm{GeV} e^{+} e^{-}$	
	3 TeV	10 TeV	3 TeV	10 TeV	3 TeV	10 TeV
κ_{W}	0.55	0.16	0.39	0.14	0.33	0.11
κ_{Z}	5.1	1.4	1.3	0.94	0.12	0.11
κ_{g}	2.0	0.52	1.4	0.50	0.75	0.43
κ_{γ}	3.2	0.84	1.3	0.71	1.2	0.69
$\kappa_{Z_{\gamma}}$	24	6.5	24	6.5	4.1	3.5
κ_{c}	6.8	2.0	6.7	2.0	1.8	1.3
κ_{t}	35	55	3.2	3.2	3.2	3.2
κ_{b}	0.97	0.26	0.82	0.25	0.45	0.22
κ_{μ}	20	4.9	4.6	3.4	4.1	3.2
κ_{τ}	2.3	0.63	1.2	0.57	0.62	0.41

κ-0 Fit Result [\%] with Forward Muon Tagging

	$\mu^{+} \mu^{-}$		$+\mathrm{HL}-\mathrm{LHC}$		$+\mathrm{HL}-\mathrm{LHC}+250 \mathrm{GeV} e^{+} e^{-}$	
	3 TeV	10 TeV	3 TeV	10 TeV	3 TeV	10 TeV
κ_{W}	0.37	0.10	0.35	0.10	0.31	0.10
κ_{Z}	1.2	0.34	0.89	0.33	0.12	0.11
κ_{g}	1.6	0.45	1.3	0.44	0.72	0.39
κ_{γ}	3.2	0.84	1.3	0.71	1.2	0.69
$\kappa_{Z_{\gamma}}$	21	5.5	22	5.5	4.0	3.3
κ_{c}	5.8	1.8	5.8	1.8	1.7	1.3
κ_{t}	34	53	3.2	3.2	3.2	3.2
κ_{b}	0.84	0.23	0.80	0.23	0.44	0.21
κ_{μ}	14	2.9	4.7	2.5	4.0	2.4
κ_{τ}	2.1	0.59	1.2	0.55	0.61	0.40

$10 \mathrm{TeV} @ 10 \mathrm{ab}^{-1}: \kappa$-0 Fit Result [\%] Without Fwd Tags

	Signal Only (2103.14043)	With Backgrounds (2203.09425)
κ_{W}	0.06	0.16
κ_{Z}	0.23	1.4
κ_{g}	0.15	0.52
κ_{γ}	0.64	0.84
$\kappa_{Z_{\gamma}}$	1.0	6.5
κ_{c}	0.89	2.0
κ_{t}	6.0	55
κ_{b}	0.16	0.26
κ_{μ}	2.0	4.9
κ_{τ}	0.31	0.63

$10 \mathrm{TeV} @ 10 \mathrm{ab}^{-1}: \kappa$-0 Fit Result [\%] With Fwd Tags

	Signal Only (2103.14043)	With Backgrounds (2203.09425)
κ_{W}	0.06	0.10
κ_{Z}	0.23	0.34
κ_{g}	0.15	0.45
κ_{γ}	0.64	0.84
$\kappa_{Z_{\gamma}}$	1.0	5.5
κ_{c}	0.89	1.8
κ_{t}	6.0	53
κ_{b}	0.16	0.23
κ_{μ}	2.0	2.9
κ_{τ}	0.31	0.59

Where do we stand? (without forward tags)

$\begin{gathered} \kappa-0 \\ \text { fit } \end{gathered}$	$\left\|\begin{array}{l} \mathrm{HL}- \\ \mathrm{LHC} \end{array}\right\|$	LHeC	$\left\|\begin{array}{ll} \mathrm{HE}-\mathrm{LHC} \\ \mathrm{~S} 2 & \mathrm{~S} 2^{\prime} \end{array}\right\|$	250	ILC 5001000		$\begin{aligned} & \text { CLIC } \\ & 1500 \end{aligned}$	3000	CEPC	$\begin{array}{c\|cc\|} \text { FCC-ee } \\ 240 & 365 \end{array}$	FCC-ee/ eh/hh		10000
κ_{W}	1.7	0.75	1.40 .98	1.80	0.290 .24	0.86	0.16	0.11	1.3	1.30 .43	0.14	0.55	0.16
κ_{Z}	1.5	1.2	1.30 .9	0.290	$0.23 \quad 0.22$	0.5	0.26	0.23	0.14	0.200 .17	0.12	5.1	1.4
κ_{g}	2.3	3.6	1.91 .2	2.30	0.970 .66	2.5	1.3	0.9	1.5	1.71 .0	0.49	2.0	0.52
κ_{γ}	1.9	7.6	1.61.2	6.7	3.41 .9	98*	5.0	2.2	3.7	4.73 .9	0.29	3.2	0.84
$\kappa_{z \gamma}$	10.	-	5.73 .8	99* 86	86* 85*	120*	15	6.9	8.2	81* 75*	0.69	24	6.5
κ_{c}	-	4.1	- -	2.51	1.30 .9	4.3	1.8	1.4	2.2	1.81 .3	0.95	6.8	2.0
κ_{t}	3.3	-	2.81 .7	6	6.91 .6	-	-	2.7	-		1.0	35	55
κ_{b}	3.6	2.1	$3.2 \begin{array}{ll}3.3\end{array}$	1.80	0.580 .48	1.9	0.46	0.37	1.2	1.30 .67	0.43	0.97	0.26
κ_{μ}	4.6	-	2.51 .7	159	9.46 .2	320*	13	5.8	8.9	1088	0.41	20	4.9
κ_{τ}	1.9	3.3	1.51 .1	1.90	$0.70 \quad 0.57$	3.0	1.3	0.88	1.3	1.40 .73	0.44	2.3	0.63

Full list of cuts: off-shell analysis

For $4 j$, same cuts at 3 and 10 TeV :

- $p_{T_{j}}>60 \mathrm{GeV},\left|\eta_{j}\right|<2.5,30<m_{V}^{\min }<100 \mathrm{GeV}, 40<m_{V}^{\max }<115 \mathrm{GeV}$

For $\ell^{+} \ell^{-} j j$:

- $p_{T_{\ell, j}}>20 \mathrm{GeV},\left|\eta_{j, \ell}\right|<2.5,70<m_{\ell \ell}<115 \mathrm{GeV}, 40<m_{j j}<115 \mathrm{GeV}$
- $\theta_{\ell \ell}, \theta_{j j}<25^{\circ}(10 \mathrm{TeV})$

For $\ell^{ \pm} \nu_{\ell j} j$:
3 TeV :

- $p_{T_{\ell, j}}>20 \mathrm{GeV},\left|\eta_{j, \ell}\right|<2.5, p_{T_{\ell}}<200 \mathrm{GeV}, p_{T_{j j}}<500 \mathrm{GeV}, 40<m_{j j}<115 \mathrm{GeV}$ 10 TeV :
- $p_{T_{\ell, j}}>20 \mathrm{GeV},\left|\eta_{j, \ell}\right|<2.5, p_{T_{\ell}}<750 \mathrm{GeV}, p_{T_{j j}}<1200 \mathrm{GeV}, 40<m_{j j}<115 \mathrm{GeV}$

Comparisons combined with HL-LHC

Perturbative unitarity

There is a delicate cancellation between the Higgs diagrams and the W / Z continuum diagrams that prevents the longitudinal pieces from growing like $\mathcal{M} \sim E^{2}$

In extended scalar sectors, this requirement becomes a sum rule for each process

$$
\left(\kappa_{V V}^{h}\right)^{2}+\sum_{i} \alpha_{i}\left(\kappa_{V V}^{i}\right)^{2}=1
$$

For example, for the Georgi-Machacek model, $W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}$yields

$$
\left(\kappa_{W}^{h}\right)^{2}+\left(\kappa_{W}^{H}\right)^{2}+\left(\kappa_{W}^{H_{5}^{0}}\right)^{2}-\left(\kappa_{W}^{H_{5}^{++}}\right)^{2}=1
$$

Therefore if m_{H} and m_{5} are below our off-shell analysis window, everything appears the same as in the SM , even if $\kappa v \neq 1$.

Georgi-Machacek Model

Add to the SM two scalar triplets in a custodial bi-triplet

$$
X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

This is custodially symmetric if $\left\langle\chi^{0}\right\rangle=\left\langle\xi^{0}\right\rangle$.

After SSB, obtain a custodial fiveplet, a triplet, and two singlets

$$
\left(H_{5}^{0}, H_{5}^{ \pm}, H_{5}^{ \pm \pm}\right),\left(H_{3}^{0}, H_{3}^{ \pm}\right), h, H
$$

where the fiveplet does not couple to fermions. For simplicity, we will consider the "low- m_{5} " benchmark, in which all $\kappa_{V}>1$ and $m_{5} \lesssim 550 \mathrm{GeV}$

Constraining the GM model (using GMCalc)

Expected constraint of $\kappa V \lesssim 1.002$ from direct searches in low- m_{5} benchmark

Georgi-Machacek model

Most general scalar potential with the added field content:

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1} \operatorname{Tr}\left[\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4} \operatorname{Tr}\left[\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau_{a} \Phi \tau_{b}\right) \operatorname{Tr}\left(X^{\dagger} t_{a} X t_{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau_{a} \Phi \tau_{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t_{a} X t_{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

Model with a Z_{2} symmetry would be ruled out by HL-LHC (de Lima, Logan, 2209.08393)
Higgs couplings straightforwardly given by

$$
\kappa_{f}=\frac{\cos \alpha}{\cos \theta}, \quad \kappa_{V}=\cos \alpha \cos \theta-\sqrt{\frac{8}{3}} \sin \alpha \sin \theta
$$

with α the $h-H$ mixing angle, and $\cos \theta=\frac{v_{\phi}}{v}$ the SM Higgs doublet contribution to EWSB.

Constraining the GM model: general scan

Essentially no allowed points with $\kappa_{V}=\kappa_{f}>1$ after expected direct search constraints

Full list of cuts: $B R_{i n v}$

For γH, and $W^{ \pm} H \rightarrow \ell^{ \pm} \nu_{\ell} H$, only one observed particle, so only one set of cuts:

- $p_{T_{\gamma, \ell}}>40 \mathrm{GeV},\left|\eta_{\gamma, \ell}\right|<2.5$

For $\mathrm{ZH} \rightarrow \ell^{+} \ell^{-} H$:

- $p_{T_{\ell}}>20 \mathrm{GeV},\left|\eta_{\ell}\right|<2.5,80<m_{\ell \ell}<100 \mathrm{GeV}, R_{\ell \ell}>0.2$

For $\mathrm{VH} \rightarrow \mathrm{jjH}$:

- $p_{T_{j}}>40 \mathrm{GeV},\left|\eta_{j}\right|<2.5,60<m_{j j}<100 \mathrm{GeV}$

For $\mu^{+} \mu^{-} H$ (forward tagging, only 10 TeV):

- $p_{T_{\mu}}>20 \mathrm{GeV}, p_{T_{\mu \mu}}>100 \mathrm{GeV}, R_{\mu \mu}>9, m_{\mu \mu}>8000 \mathrm{GeV}$

