Single Higgs Precision at a Muon Collider

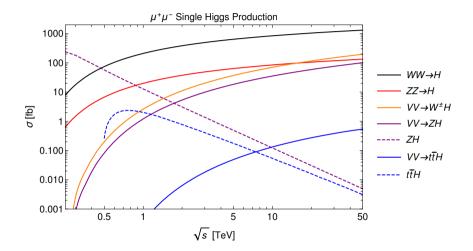
Matthew Forslund

with Patrick Meade

C. N. Yang Institute for Theoretical Physics

December 15, 2022

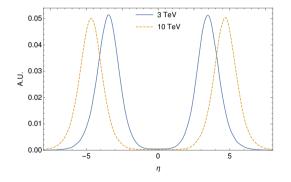
The current status (J. de Blas et al. 1905.03764)


-	к-0	HL-	LHeC	HE	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/
_	fit	LHC		S2	S2′	250	500	1000	380	1500	3000		240	365	eh/hh
	κ_W	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
	κ_Z	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
	κ_{g}	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
	κ_{γ}	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29
	$\kappa_{Z\gamma}$	10.	—	5.7	3.8	99*	86*	85*	120*	15	6.9	8.2	81*	75 *	0.69
	κ_c	—	4.1	—	—	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
	κ_t	3.3	—	2.8	1.7	—	6.9	1.6	—	—	2.7	—	_	_	1.0
	κ_{b}	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
	κ_{μ}	4.6	_	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41
	κ_{τ}	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

$$\kappa$$
-0:
 $BR_{BSM}=0$

 $\kappa_i \equiv g_i/g_i^{SM}$

2 / 44


Single Higgs Production at Muon Colliders (2203.09425)

High energies dominated by $WW \rightarrow H$ and $ZZ \rightarrow H$.

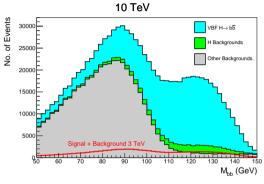
Forward Muons

To distinguish between WW-fusion and ZZ-fusion, must be able to tag the forward muons beyond the $|\eta| \approx 2.5$ nozzles

For ZZ-fusion, we include results considering tagging up to $|\eta| \leq 6$.

Event generation is done using MadGraph5 and showering with Pythia8

Use Delphes fast sim with the muon collider card for detector


2-body final states required to have both particles satisfying $|\eta| <$ 2.5 and $p_T >$ 40 GeV

• Loosen to $p_T > 20$ GeV for non-hadronic 4-body final states.

Apply flavour tagging, additional process dependent cuts, estimate precision using $\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$

Without forward tagging, combine WWF and ZZF- otherwise, consider separately

Hadronic Processes: *bb*

Precision (%)										
Energy	Combination	WWF	<i>ZZ</i> F							
3 TeV	0.76	0.80	2.6							
10 TeV	0.21	0.22	0.77							

Dominant background from Z-peak: distinguishing the two is crucial

3 TeV has also been done with fullsim: quite similar results (2209.01318)

The $c\bar{c}$ and gg channels are very similar, with mistagged $H\to b\bar{b}$ contributing a large background as well

For WW^* and ZZ^* , we generate the full $2 \rightarrow 6$ backgrounds such as $\mu\mu \rightarrow \nu\nu\ell\ell jj$ using MadGraph.

Consider $WW^* \rightarrow (\ell \nu jj, 4j), ZZ^* \rightarrow (4\ell, 2\ell 2j, 4j)$

The 4*j* final states have a large background from $H \rightarrow b\bar{b}$, *gg* from exclusive clustering, completely overwhelming all other backgrounds.

Number of Events

Process		$3{ m TeV}$		$10{ m TeV}$			
1100655	4 <i>j</i>	2 <i>j</i> 2ℓ	4ℓ	4 <i>j</i>	2 <i>j</i> 2ℓ	4ℓ	
$\mu^{+}\mu^{-} \rightarrow \nu_{\mu}\bar{\nu}_{\mu}H; \ H \rightarrow ZZ^{*} \rightarrow X$	124	103	5	2910	1590	66	
$\mu^+\mu^- ightarrow \mu^+\mu^- H; \ H ightarrow ZZ^* ightarrow X$	3	9	0	315	151	8	
Others	6700	50	0	208000	1370	2	

10 TeV @ 10 ab ⁻¹
0.34
0.45
0.84
5.5
1.8
53
0.23
2.9
0.59

κ -0 Fit Result (With Fwd Tagging) [%]

Assume no BSM branching ratios

$$\kappa_i = g_i/g_i^{SM}$$

Removing forward tagging mainly affects κ_Z :

- $1.2\% \rightarrow 5.1\%$
- 0.34% \rightarrow 1.4%

Where do we stand? (with forward tags)

к-0	HL-	LHeC	HE	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/	μ^+	μ^{-}
fit	LHC		S2	S2′	250	500	1000	380	1500	3000		240	365	eh/hh	3000	10000
κ_W	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.37	0.10
κ_Z	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	1.2	0.34
κ_{g}	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	1.6	0.45
κ_γ	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	3.2	0.84
$\kappa_{Z\gamma}$	10.	_	5.7	3.8	99*	86*	85*	120*	15	6.9	8.2	81*	75 *	0.69	21	5.5
κ_c	—	4.1	—	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	5.8	1.8
κ_t	3.3	_	2.8	1.7	_	6.9	1.6	—	—	2.7	—	_	_	1.0	34	53
κ_{b}	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.84	0.23
κ_{μ}	4.6	_	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41	14	2.9
$\kappa_{ au}$	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	2.1	0.59

The κ -precisions presented before rely on $BR_{inv} = BR_{exo} = 0$: Relaxing this assumption leads to a flat direction in the fit.

Consider a universal modifier κ and allow $BR_{BSM} > 0$:

$$\Gamma_H/\Gamma_H^{SM} = \kappa^2/(1 - BR_{BSM}) \rightarrow \mu_{i \rightarrow f}^{on-shell} \equiv \sigma_{i \rightarrow f}/\sigma_{i \rightarrow f}^{SM} = \kappa^2(1 - BR_{BSM})$$

So long as $\kappa > 1$, there is always a possible BR_{BSM} to make all $\mu_i^{on-shell} = 1$.

Constraining the Higgs width is necessary to remove this degeneracy.

For a width precision of $\Delta\Gamma$, can't obtain a coupling precision better than $\Delta\kappa \sim (1/4)\Delta\Gamma$.

Constraining Γ_H

There are three ways to constrain the width

1. Perform a lineshape scan (125 GeV $\mu^+\mu^-$: 2203.04324 (J. de Blas et al.))

Only possible at $s = m_H^2$

2. Measure the inclusive production cross section to directly constrain a κ_i (e^+e^-)

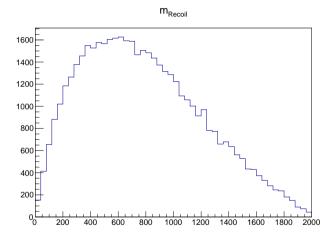
$$\mu_{\mathit{Incl}}\equiv\sigma_{\mathit{Incl}}/\sigma_{\mathit{Incl}}^{\mathit{SM}}=\kappa^2
ightarrow\mu_i^{\mathit{on-shell}}/\mu_{\mathit{Incl}}=(1-\mathit{BR}_{\mathit{BSM}})$$

3. Indirectly constrain (LHC)

Let's look in more detail

At e^+e^- colliders, one measures the inclusive $e^+e^- \rightarrow ZH$ cross section via the recoil mass method:

Assuming one knows E_{CM} , then by kinematics


$$m_H^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

 \rightarrow Can measure σ_{Incl}^{ZH} by only measuring the Z decay products!

However, this technique relies on a precision measurement of E_Z ...

Nevertheless, could this be done at a muon collider via the forward muons in $\mu^+\mu^-H$?

Can we do this for $\mu^+\mu^- \rightarrow \mu^+\mu^- H$?

Not really... would need unrealistically good energy resolution in forward detectors

LHC techniques

We are left with one option: indirectly constrain as at the LHC.

Off-shell, the width doesn't contribute to the Higgs diagrams, so one can constrain it:

$$\sigma_{i \to H^* \to f}^{off-shell} = \kappa^4 \sigma_{SM}^{off-shell} \to \mu_{i \to H^* \to f}^{off-shell} = \kappa^4, \qquad \frac{\mu_{i \to H^* \to f}^{off-shell}}{\mu_{i \to H \to f}^{on-shell}} = \frac{\Gamma_H}{\Gamma_H^{SM}} \equiv \xi = \frac{\kappa^2}{1 - BR_{BSM}}$$

so that $\mu^{off-shell} = 1$ and $\mu^{on-shell} = 1$ cannot simultaneously be satisfied if $BR_{BSM} > 0$. (This would be an off-shell coupling measurement, not a width measurement).

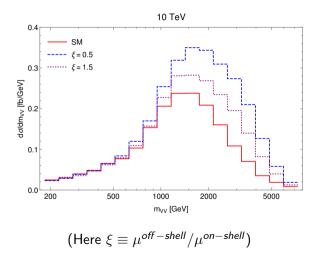
However, the rate is much less off-shell... Exploit perturbative unitarity!

If $\kappa_V \neq 1$, then $W_L W_L \rightarrow W_L W_L$ scattering grows with energy, $\sigma \propto s^2$

High energy $VV \rightarrow VV$ scattering is highly sensitive to $\kappa_V!$

Off-shell $VV \rightarrow VV$ scattering

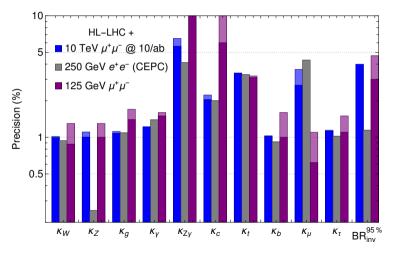
Consider 4*j*, $\ell^{\pm}\nu_{\ell}jj$, and $\ell^{+}\ell^{-}jj$


Stricter cuts than on-shell, BIB shouldn't matter much

Fit each bin to a function $a + b\kappa_i\kappa_j + c\kappa_i^2\kappa_j^2$ by varying κ_V .

Fitting κ_W , κ_Z , and ξ yields:

 $\Delta\Gamma=4.0\%$ at 10 TeV


 $\Delta\Gamma = 58\%$ at 3 TeV (not competitive with LHC)

Comparisons (combined with HL-LHC)

Blue shaded: forward tagging

Purple shaded: 5 vs 20/ab

Even if both the on-shell and off-shell regions appear SM-like, there is still a loophole.

We assumed the off-shell region scaled like the SM, but this is not true if additional scalars contribute to electroweak symmetry breaking.

When these additional scalars contribute to $VV \rightarrow VV$, combination with SM will restore perturbative unitarity of off-shell region, making it appear to be SM, even if $\kappa_V \neq 1$.

This restoration only occurs above resonance: must be lighter than our off-shell analysis window!

Strict requirements for a model to invalidate the off-shell measurement and have a flat direction

- 1. The model must generate $\kappa_V > 1$ and have a BR_{BSM} (flat on-shell)
- 2. There must be a regime where $\kappa_V \approx \kappa_f \approx \kappa_\gamma > 1$ (flat on-shell)
- 3. There must be new electroweak charged scalars lighter than a few TeV that contribute to EWSB (off-shell loophole)
- 4. The new physics must be custodially symmetric at tree-level (off-shell loophole)
- 5. Direct search constraints must be satisfied (both)

One of the only ways to generate a $\kappa_V > 1$ is by adding scalar multiplets larger than doublets that contribute to EWSB.

```
(2HDMs can have \kappa_f > 1, but not \kappa_V)
```

To satisfy electroweak precision (ho = 1), can only be a septet with Y = 2 or a Georgi-Machacek model

In either case, there would be many new electroweak charged scalar states lighter than a few TeV to search for directly, which muon colliders are great at!

Since a flat direction requires a BR_{BSM} , can constrain it directly as well. For example, suppose that $BR_{BSM} = BR_{inv}$ (all invisible decays).

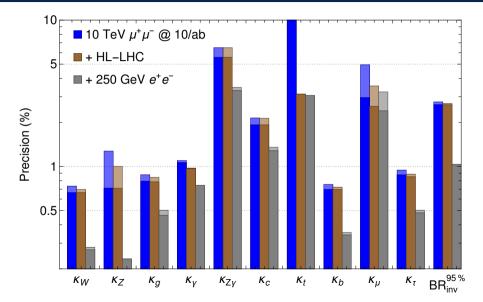
Try to search for events in $\mu^+\mu^-H$ with no observed particles other than the forward $\mu^+\mu^-$

For the default p_T resolution of 10%, can obtain a 2σ constraint of 0.34%-2.2% on $\kappa_Z^2 BR_{inv}$ depending on the maximum η reach (6 – 4.5)

For worse p_T resolutions, $\mu^+\mu^- \rightarrow \mu^+\mu^-$ begins to leak in at a high rate... highly dependent on the forward detector properties

Further study necessary to see if this is feasible or not

Since $\mu^+\mu^-H$ is dependent on forward tagging capabilities, what can we do without it?


Can search for excesses in associated production modes:

 γH , $W^{\pm}H \rightarrow \ell^{\pm}\nu_{\ell}H$, $ZH \rightarrow \ell^{+}\ell^{-}H$, and combined $(W^{\pm}, Z)H \rightarrow jjH$

Perform cuts similar to on-shell, fit each process to κ_W, κ_Z to include interference, similar to the off-shell analysis

All depend on κ_W, κ_Z , and BR_{inv} : must do the full fit to see impact

Including this in the fit

22 / 44

Conclusion

In the κ -0 framework, 10 TeV $\mu^+\mu^-$ collider is highly competitive with other future colliders.

Beyond κ -0, a 10 TeV $\mu^+\mu^-$ collider is still comparable to a 250 GeV e^+e^- or 125 GeV $\mu^+\mu^-$ collider only using off-shell coupling constraints, with more model dependence.

Invalidating the off-shell measurement requires electroweak charged scalars and a BR_{BSM} , which can both be searched for

A 3 TeV $\mu^+\mu^-$ collider **cannot** effectively constrain the width, even indirectly, beyond what the LHC can do.

Great complementary between a 10 TeV $\mu^+\mu^-$ collider and e^+e^- or 125 GeV $\mu^+\mu^-$ colliders, since they have different dominant production modes.

BACKUPS

b-tagging is done using the tight working point (50%) inspired by CLIC (1812.07337)

- *c*-quark mistagging rate $\leq 3\%$
- light quark mistagging rate $\leq 0.5\%$

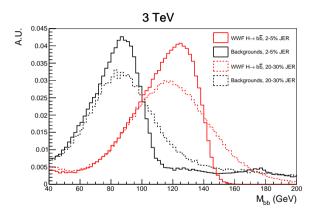
For *c*-tagging, we use the tagging rates of ILC reported in (1506.08371). We take 20% as our working point to match the Smasher's Guide.

- *b*-quark mistagging rate of flat 1.3%
- light quark mistagging rate of flat 0.66%

For $H \rightarrow \tau \tau$, we take a τ -tagging efficiency of 80% with a jet mistag rate of 2%.

Event Selection $(b\bar{b}, c\bar{c}, gg(+s\bar{s}))$

Apply an additional correction to *b*-jet p_T to account for energy losses during reconstruction (1811.02572)


- Smoothly scales 4-momentum by up to ${\sim}1.16$ at low p_T
- Rough approximation to ATLAS *ptcorr* correction (1708.03299)
- Reproduces a Higgs peak centered near 125 GeV

Apply a similar correction to *c*-jets

Events that pass the P_T and η cuts are then selected based on an invariant mass cut:

- 100 $< M_{bar{b}} <$ 150 for $bar{b}$
- $105 < M_{car{c}} < 145$ for $car{c}$
- 95 < M_{jj} < 135 for $gg(+sar{s})$

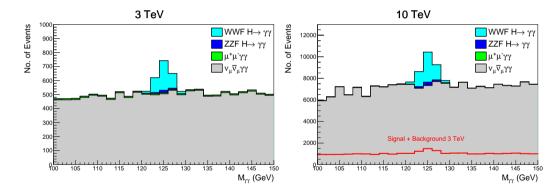
Estimating the Effects of the BIB

Worse JER based on current fullsim- additional spreading roughly doubles the background contribution from the Z peak: $0.76\% \rightarrow 0.86\%$ precision, quite comparable to fullsim result (2209.01318).

The dominant backgrounds for $c\bar{c}$ and $gg(+s\bar{s})$ are mostly the same as for $b\bar{b}$ and primarily removed via an M_{jj} cut

 $H
ightarrow b ar{b}$ becomes a large irreducible background

Following the same procedure as in $b\bar{b}$, we obtain results for $c\bar{c}$ and $gg(+s\bar{s})$:


	Precision (%									
Energy	сē	$gg(+sar{s})$								
3 TeV	13	3.3								
10 TeV	4.0	0.89								

10/1

 $\tau^+\tau^-$ follows a similar strategy with similar backgrounds, adding $\theta_{\tau\tau} > 15(20)$ cuts, to get 4.0(1.1)% precision.

 $\gamma\gamma$ and $Z\gamma$

For $\gamma\gamma$, require no isolated leptons and a cut of $122 < M_{\gamma\gamma} < 128$.

The $Z(jj)\gamma$ process has similar backgrounds as the hadronic modes, but with more complicated cuts.

This process requires special care: VBF at 10 TeV vs *s*-chan at 3, the cross section is small, and the $t\bar{t}$ background is large.

Select events with four *b*-tagged $p_T > 20$ jets and ≤ 1 leptons, apply various cuts on $E_{W,t,H}$, $m_{W,t,H}$

Obtain a precision of 61% at 3 TeV and 53% at 10 TeV

(Different y_t dependence at 3 and 10 TeV)

Number of Events

Process	3	TeV	10 TeV			
TTOCESS	SL	Had	SL	Had		
$tar{t}H;\;H o bar{b}$	34	63	49	59		
$t\bar{t}H; H earrow bar{b}$	9	21	6	11		
tĪ	609	2070	502	1440		
tŦZ	207	362	530	663		
tītbb	9	21	15	18		

 κ -0 Fit Result [%]

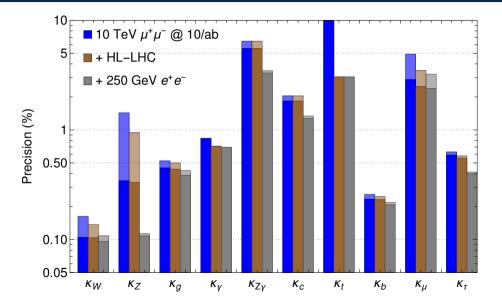
	μ^+	$^+\mu^-$	+ H	L-LHC	+ HL-LHC	$\Sigma + 250 \mathrm{GeV} e^+ e^-$
	3 TeV	10 TeV	3 TeV	10 TeV	3 TeV	10 TeV
κ_W	0.55	0.16	0.39	0.14	0.33	0.11
κ_Z	5.1	1.4	1.3	0.94	0.12	0.11
κ_{g}	2.0	0.52	1.4	0.50	0.75	0.43
κ_γ	3.2	0.84	1.3	0.71	1.2	0.69
$\kappa_{Z\gamma}$	24	6.5	24	6.5	4.1	3.5
κ_{c}	6.8	2.0	6.7	2.0	1.8	1.3
κ_t	35	55	3.2	3.2	3.2	3.2
κ_{b}	0.97	0.26	0.82	0.25	0.45	0.22
κ_{μ}	20	4.9	4.6	3.4	4.1	3.2
$\kappa_{ au}$	2.3	0.63	1.2	0.57	0.62	0.41

	μ^+	$-\mu^-$	+ HI	L-LHC	+ HL-LHC	$C + 250 \mathrm{GeV} e^+ e^-$
	3 TeV	10 TeV	3 TeV	10 TeV	3 TeV	10 TeV
κ_W	0.37	0.10	0.35	0.10	0.31	0.10
κ_Z	1.2	0.34	0.89	0.33	0.12	0.11
κ_{g}	1.6	0.45	1.3	0.44	0.72	0.39
κ_γ	3.2	0.84	1.3	0.71	1.2	0.69
$\kappa_{Z\gamma}$	21	5.5	22	5.5	4.0	3.3
κ_c	5.8	1.8	5.8	1.8	1.7	1.3
κ_t	34	53	3.2	3.2	3.2	3.2
κ_{b}	0.84	0.23	0.80	0.23	0.44	0.21
κ_{μ}	14	2.9	4.7	2.5	4.0	2.4
$\kappa_{ au}$	2.1	0.59	1.2	0.55	0.61	0.40

 $\kappa\text{-}0$ Fit Result [%] with Forward Muon Tagging

	Signal Only (2103.14043)	With Backgrounds (2203.09425)
κ_W	0.06	0.16
κ_Z	0.23	1.4
κ_{g}	0.15	0.52
κ_γ	0.64	0.84
$\kappa_{Z\gamma}$	1.0	6.5
κ_{c}	0.89	2.0
κ_t	6.0	55
κ_{b}	0.16	0.26
κ_{μ}	2.0	4.9
$\kappa_{ au}$	0.31	0.63

10 TeV @ 10 ab⁻¹: κ -0 Fit Result [%] Without Fwd Tags


	Signal Only (2103.14043)	With Backgrounds (2203.09425)
κ_W	0.06	0.10
κz	0.23	0.34
κ_{g}	0.15	0.45
κ_γ	0.64	0.84
$\kappa_{Z\gamma}$	1.0	5.5
κ_c	0.89	1.8
κ_t	6.0	53
κ_{b}	0.16	0.23
κ_{μ}	2.0	2.9
$\kappa_{ au}$	0.31	0.59

10 TeV @ 10 ab⁻¹: κ -0 Fit Result [%] With Fwd Tags

Where do we stand? (without forward tags)

к-0	HL-	LHeC	HE-	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/	μ^+	$+\mu^-$
fit	LHC		S2	S2′	250	500	1000	380	1500	3000		240	365	eh/hh	3000	10000
κ_W	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.55	0.16
κ_Z	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	5.1	1.4
κ_{g}	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	2.0	0.52
κ_γ	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	3.2	0.84
$\kappa_{Z\gamma}$	10.	_	5.7	3.8	99*	86*	85*	120*	15	6.9	8.2	81*	75 *	0.69	24	6.5
κ_c	—	4.1	—	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	6.8	2.0
κ_t	3.3	_	2.8	1.7	-	6.9	1.6	_	_	2.7	_	_	-	1.0	35	55
κ_b	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.97	0.26
κ_{μ}	4.6	_	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41	20	4.9
$\kappa_{ au}$	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	2.3	0.63

 κ -0 Fit

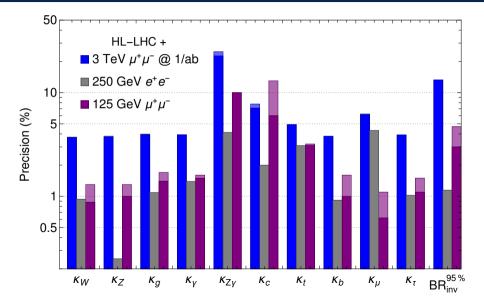
36 / 44

Full list of cuts: off-shell analysis

For 4j, same cuts at 3 and 10 TeV:

• $p_{\mathcal{T}_j} > 60$ GeV, $|\eta_j| < 2.5$, $30 < m_V^{min} < 100$ GeV, $40 < m_V^{max} < 115$ GeV

For $\ell^+\ell^-jj$:


- $p_{{\cal T}_{\ell,j}} > 20$ GeV, $|\eta_{j,\ell}| < 2.5$, 70 $< m_{\ell\ell} < 115$ GeV, 40 $< m_{jj} < 115$ GeV
- $heta_{\ell\ell}, heta_{jj}<25^\circ$ (10 TeV)

For $\ell^{\pm}\nu_{\ell}jj$:

3 TeV:

- $p_{T_{\ell,j}} > 20$ GeV, $|\eta_{j,\ell}| < 2.5$, $p_{T_{\ell}} < 200$ GeV, $p_{T_{jj}} < 500$ GeV, $40 < m_{jj} < 115$ GeV 10 TeV:
- $p_{\mathcal{T}_{\ell,j}} > 20$ GeV, $|\eta_{j,\ell}| < 2.5$, $p_{\mathcal{T}_\ell} < 750$ GeV, $p_{\mathcal{T}_{jj}} < 1200$ GeV, $40 < m_{jj} < 115$ GeV

Comparisons combined with HL-LHC

38 / 44

There is a delicate cancellation between the Higgs diagrams and the W/Z continuum diagrams that prevents the longitudinal pieces from growing like $M \sim E^2$

In extended scalar sectors, this requirement becomes a sum rule for each process

$$(\kappa_{VV}^h)^2 + \sum_i \alpha_i (\kappa_{VV}^i)^2 = 1$$

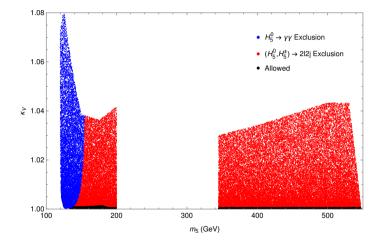
For example, for the Georgi-Machacek model, $W_L^+W_L^- o W_L^+W_L^-$ yields

$$(\kappa_W^h)^2 + (\kappa_W^H)^2 + (\kappa_W^{H_5^0})^2 - (\kappa_W^{H_5^{++}})^2 = 1$$

Therefore if m_H and m_5 are below our off-shell analysis window, everything appears the same as in the SM, even if $\kappa_V \neq 1$.

Add to the SM two scalar triplets in a custodial bi-triplet

$$X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$


This is custodially symmetric if $\langle \chi^0 \rangle = \langle \xi^0 \rangle$.

After SSB, obtain a custodial fiveplet, a triplet, and two singlets

$$(H_5^0, H_5^{\pm}, H_5^{\pm\pm}), (H_3^0, H_3^{\pm}), h, H$$

where the fiveplet does not couple to fermions. For simplicity, we will consider the "low- m_5 " benchmark, in which all $\kappa_V > 1$ and $m_5 \lesssim 550$ GeV

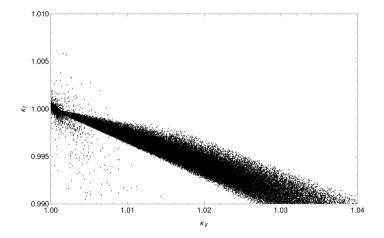
Constraining the GM model (using GMCalc)

Expected constraint of $\kappa_V \lesssim 1.002$ from direct searches in low- m_5 benchmark

Georgi-Machacek model

Most general scalar potential with the added field content:

$$\begin{split} V(\Phi, X) = & \frac{\mu_2^2}{2} \mathrm{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \mathrm{Tr}(X^{\dagger} X) + \lambda_1 \mathrm{Tr}[(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \mathrm{Tr}(\Phi^{\dagger} \Phi) \mathrm{Tr}(X^{\dagger} X) \\ & + \lambda_3 \mathrm{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 \mathrm{Tr}[(X^{\dagger} X)]^2 - \lambda_5 \mathrm{Tr}(\Phi^{\dagger} \tau_a \Phi \tau_b) \mathrm{Tr}(X^{\dagger} t_a X t_b) \\ & - M_1 \mathrm{Tr}(\Phi^{\dagger} \tau_a \Phi \tau_b) (U X U^{\dagger})_{ab} - M_2 \mathrm{Tr}(X^{\dagger} t_a X t_b) (U X U^{\dagger})_{ab} \end{split}$$


Model with a Z_2 symmetry would be ruled out by HL-LHC (de Lima, Logan, 2209.08393)

Higgs couplings straightforwardly given by

$$\kappa_f = \frac{\cos \alpha}{\cos \theta}, \qquad \kappa_V = \cos \alpha \cos \theta - \sqrt{\frac{8}{3}} \sin \alpha \sin \theta$$

with α the h - H mixing angle, and $\cos \theta = \frac{v_{\phi}}{v}$ the SM Higgs doublet contribution to EWSB.

Constraining the GM model: general scan

Essentially no allowed points with $\kappa_V = \kappa_f > 1$ after expected direct search constraints

Full list of cuts: BRinv

For γH , and $W^{\pm}H \rightarrow \ell^{\pm}\nu_{\ell}H$, only one observed particle, so only one set of cuts:

• $p_{\mathcal{T}_{\gamma,\ell}} >$ 40 GeV, $|\eta_{\gamma,\ell}| <$ 2.5

For $ZH \rightarrow \ell^+ \ell^- H$:

• $p_{{\mathcal T}_\ell}>$ 20 GeV, $|\eta_\ell|<$ 2.5, 80 $< m_{\ell\ell}<$ 100 GeV, $R_{\ell\ell}>$ 0.2

For $VH \rightarrow jjH$:

• $p_{\mathcal{T}_j} >$ 40 GeV, $|\eta_j| <$ 2.5, 60 $< m_{jj} <$ 100 GeV

For $\mu^+\mu^-H$ (forward tagging, only 10 TeV):

• $p_{\mathcal{T}_{\mu}}>$ 20 GeV, $p_{\mathcal{T}_{\mu\mu}}>$ 100 GeV, $R_{\mu\mu}>$ 9, $m_{\mu\mu}>$ 8000 GeV