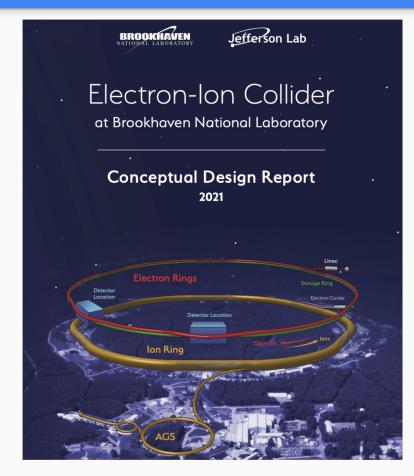


Physics Potential of a TeV Muon-Ion Collider

Based on Snowmass '21 whitepaper: <u>arXiv:2203.06258</u>, Initial BNL MulC paper: <u>NIM A1027 (2022)</u>, And some works in progress...


<u>D. Acosta</u>, P.Boyella, W. Li, O. Miguel Colin, Y. Wang, *X. Zuo* (Rice U.) E. Barberis, N. Hurley, D. Wood (Northeastern U.)

Outline

- Brief review of concept
 - One O(TeV) muon ring as a first step, colliding with a high-energy hadron beam
 - i.e. it is also a Vector Boson Collider along with a DIS machine
- Science case
 - Included in our Snowmass contribution:
 - Covers DIS structure measurements of p/ions, QCD, but focus here on Energy Frontier:
 - Higgs and SM particle production processes
 - BSM physics (Z', LQ)
- Experiment considerations
 - Initial BIB studies
- Future workshop

Inspiration: The Electron-Ion Collider (EIC) at BNL

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

International facility approved by the U.S. nuclear physics program. Science to begin in 2030s

<u>EIC Conceptual Design Report</u> recently released and project approved. Initial detector design selected and collaboration formed (EPIC)

Salient points:

Electron beam energy up to 18 GeV

But what if we changed leptons?

A lot of interest

in µµ colliders

- Hadron beam energy up to 275 GeV
- √s = 20 -- 140 GeV
- Luminosity 10³³ -- 10³⁴ Hz/cm²
- Polarized electron, proton and ion beams (any)

Physics goals:

- ep and eN deep inelastic scattering
- Nucleon spin structure
- Gluon saturation scale (Q_S)

3

A Muon-Ion Collider – Who Ordered That?

Probe a **new energy scale** and nucleon momentum fraction in Deep Inelastic Scattering using a relatively compact machine

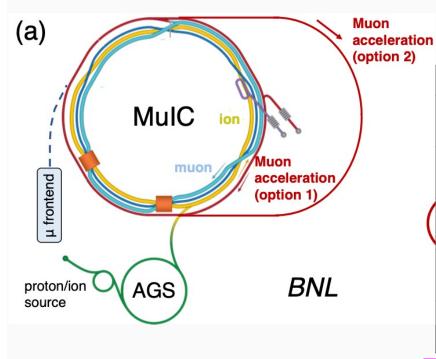
- √s ~ 1 TeV
- Q² up to 10⁶ GeV² x as low as 10⁻⁶

Well beyond the EIC, matches that of the proposed LHeC. Further beyond if collided with the LHC

Provides a science case for a (single) TeV muon storage ring demonstrator toward a multi-TeV µ+µ- collider

- Precision PDFs in new regimes (incl. spin at BNL)
- QCD at extreme parton density
- Precision EWK and QCD measurements
- Higgs and other SM particle production
- BSM / LFV sensitivity with an initial muon (e.g. Z', LQ)

Facilitate the collaboration of the nuclear and particle physics communities around an innovative and forward-looking machine


Re-use existing facilities (e.g. MulC at BNL upgrading EIC, FNAL? CERN?)

Broad science program helps share costs, and re-use helps economize

A Muon-Ion Collider at BNL?

Acosta and Li, NIM A 1027 (2022) 166334

\rightarrow Replace e by μ beam at EIC

Bending radius of RHIC tunnel: **r = 290m**

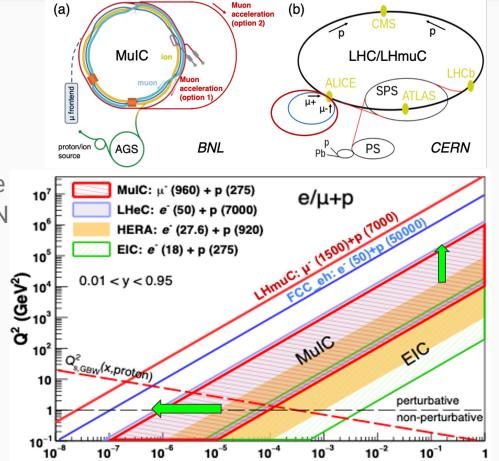
Achievable muon beam energy: 0.3Br

	Parameter 1 (aggressive)		2 (realistic)	3 (conservative)		
	Muon energy (TeV)	1.39	0.96	0.73		
	Muon bending magnets (T)	16 (FCC)	11 (HL-LHC)	8.4 (LHC)		
(Muon bending radius (m)		290			
	Proton (Au) energy (TeV)	0.275 (0.11/nucleon)				
	CoM energy (TeV)	1.24 (0.78)	1.03 (0.65)	0.9 (0.57)		
-	√s = 1 TeV !	7-8X incr	ease over E	IC energy		

Energy Configurations and Luminosity

LHC option Parameter MuIC2 LHmuC $\sqrt{s_{\mu p}}$ (TeV) 1.0 \rightarrow 2.0 6.5 $\leftarrow \sqrt{S}$ 0.33 0.74 ← Estimate of lumi L_{µp} (10³³cm⁻²s⁻¹) 2.8 0.07 2.1 4.7 (*) Int. Lumi. (fb⁻¹) 6 178 400 237 per 10 yrs Muon Muon Proton **Staging options** Proton Beam energy 0.1 0.5 0.96 \leftarrow Beam energies 0.275 7 1.5 (TeV) \rightarrow 1.0 Of 3 TeV µ+µ-20 20 2.2 $N_{\rm b}$ (10¹¹) 40 3 20 f^{μ}_{rep} (Hz) 15 $\mathcal{L}_{\mu p} = \frac{N^{\mu} N^{p}}{4\pi \max[\sigma_{x}^{\mu}, \sigma_{x}^{p}] \max[\sigma_{y}^{\mu}, \sigma_{y}^{p}]} \min[f_{c}^{\mu}, f_{c}^{p}] H_{hg},$ *But note that arXiv:2211.07513 discusses Cycles per µ beam-beam tune-shifts that limit luminosity by 1134 bunch, N^{μ}_{cvcle} $\sigma_{x,y}^{\mu,p} = \sqrt{\varepsilon_{x,y}^* \beta_{x,y}^* m^{\mu,p} / E^{\mu,p}}$ factor 100. Need to optimize: decrease particles/bunch, ε^{*}_{x,v} (μm) 200 5 increase number of bunches, etc. $\beta^*_{x,v}$ @IP (cm) 1.7 Trans. beam 48 4.7 7.1 7.6 3 7.1 size, $\sigma_{x,v}$ (µm) Muon Collider parameters + BNL/EIC and LHC proton beam parameters Upgrade

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider


hadron ring

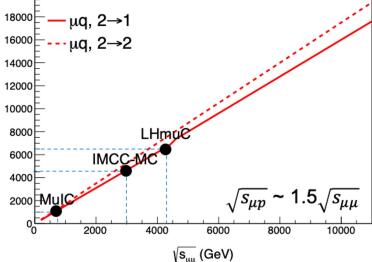
N

DIS Reach in x and Q² for *lp* Collisions

- Expands DIS reach at high Q² and low x by 1–3 orders of magnitude over HERA and the EIC
- Coverage of MuIC at BNL is nearly identical with that of the proposed Large Hadron electron Collider (LHeC) at CERN with 50 GeV e⁻ beam
 - With complementary kinematics
- Coverage of a mu-LHC collider at CERN (LHmuC) would significantly <u>exceed</u> even that of the FCC-eh option of a 50 TeV proton beam with 50 GeV e⁻ beam

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

x

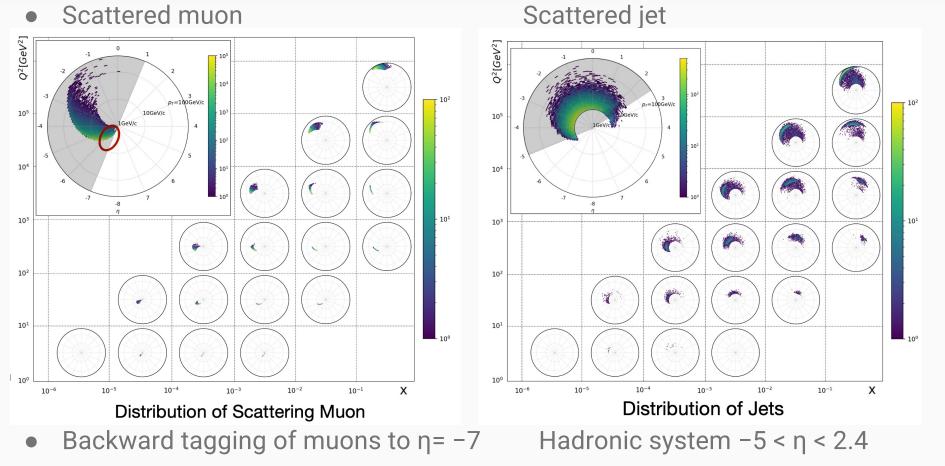

7

Equivalent Reach for Production, $\mu p vs. \mu^+\mu^-$

- Compute equivalent parton luminosity of a µp collider for $2 \rightarrow 1$ and $2 \rightarrow 2$ processes
- We find that **a** $\mu^+\mu^-$ collider is equivalent to a µp collider with 1.5× higher \sqrt{s} in terms of its discovery potential.
- Put another way, colliding just one muon beam with a well understood (existing?) high energy proton beam can explore interesting EWK phase space
 - Higgs production is via Vector Boson Fusion in both high energy 0 $\mu^+\mu^-$ and μp collisions
 - Swapping 50 GeV e- beam with >50 GeV µ beam exceeds 1.3 TeV LHeC Ο energy scale at CERN, but with potential to go to higher energy!

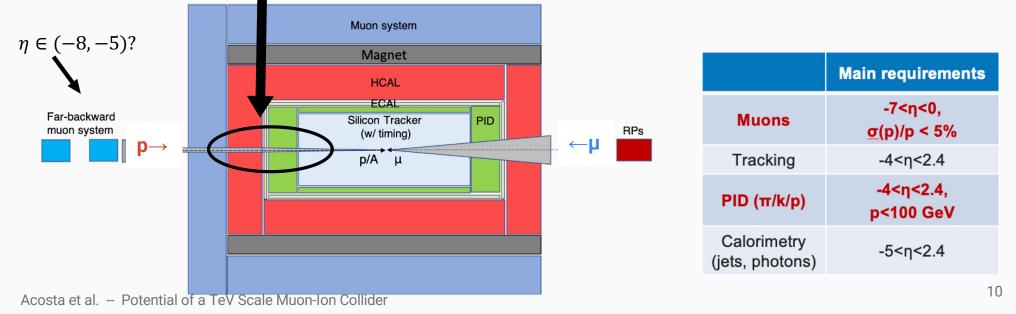
Perhaps an interesting first step for a non-US muon accelerator?

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

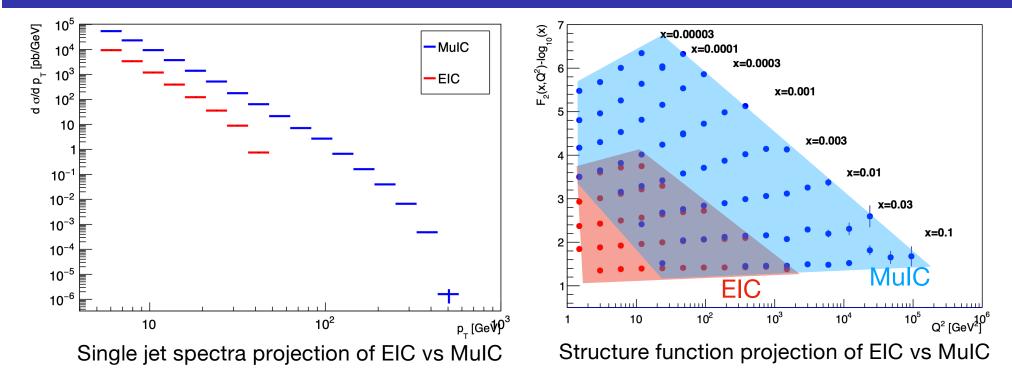

20000

√s_{µp} (GeV)

Kinematics



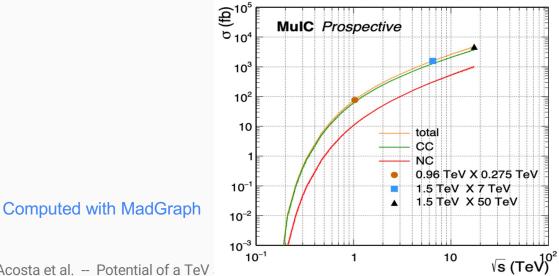
Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

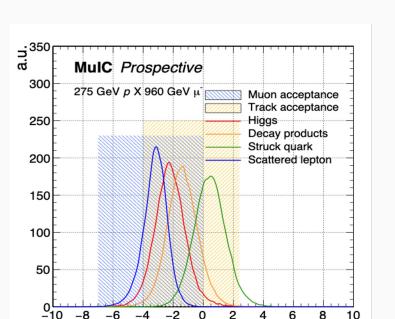


Detector Considerations and Challenges

- Modified $\mu^+\mu^-$ conceptual detector design
- Hadron PID over wide phase space
- Detection of scattered muons is important, mostly at high η (far-backward), with good resolution up to TeV scale
 - Useful also for a $\mu^+\mu^-$ experiment to tag/veto NC VBF processes
- Shielding nozzle only on incoming muon side (Needs BIB study)

Physics Potential in QCD and Nuclear Physics




pseudo – data of one year of running (28 weeks and 50% duty cycle $\rightarrow \sim 40 \text{ fb}^{-1}$)

Yijie, Wei, Darin	MulC	11

Higgs Physics with MulC

- **VBF** mode
 - σ grows with \sqrt{s} , CC exchange larger than NC Ο
 - Cross section comparable to LHeC and $\mu^+\mu^-$ colliders \bigcirc
- Acceptance
 - All final state objects, other than the muon, 0 are in central region of detector (in contrast to LHeC)

arXiv:2203.06258

NC

 ν_{μ}

 W^{-}

 W^+

CC H

 μ^{-}

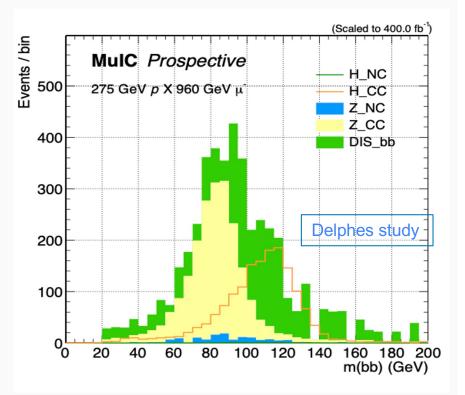
Acosta et al. -- Potential of a TeV

H

 μ^{-}

12

η

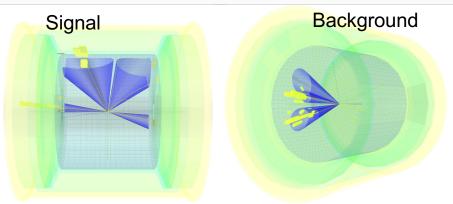

N

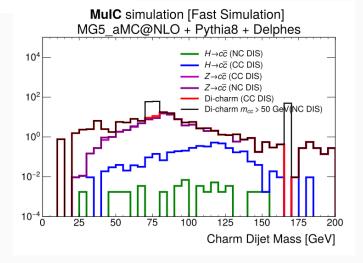
Higgs \rightarrow bb with MulC

- Pseudo-analysis for $H \rightarrow bb$
 - Requirements that enhance CC VBF process over NC DIS bb background:
 - 3 jets in final state (2 b-tagged)
 - o muon veto, MET
 - Higgs p_T
 - S/B ~ 1 for H \rightarrow bb
 - Expect ~900 selected H→bb in 400 fb⁻¹ (10y)
 @ 1TeV MulC
 - Increases by factor 10 at LHmuC

• What about $H \rightarrow cc$?

- Difficult at LHC
- See next slide

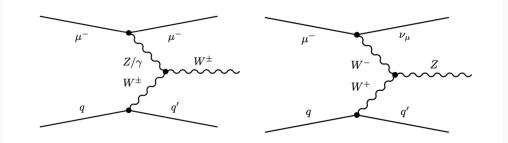


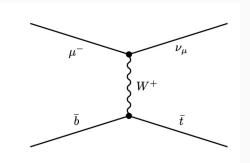

Higgs \rightarrow cc [Independent SMU group study]

- Similar pseudo-analysis of H →cc at 1 TeV MuIC
 - But smaller BR
 - Smaller c-tagging efficiency (27%), and more bkg...
- Selection:
 - Etmiss > 50 GeV
 - Veto scattered muon (NC)
 - ≥2 charm-tagged jets
- Yields only a handful of events...
- Did not study yet mis-tagged light dijet bkg, whose cross section is much larger
- However, there may be topological features useful to discriminate signal (as seen in event displays)
- Also Higgs cross section grows with \sqrt{s}
- But fair to caution using H →cc as a motivation for MulC... ☺

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

P.Ahluwalia, S.Sekula, et al. (SMU) arXiv:2211.02615

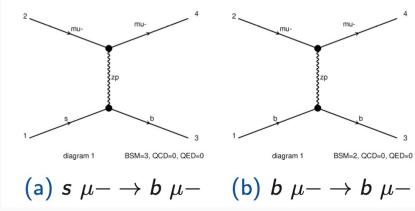



Other SM Particle Production

- Vector boson production,
 - Sensitive to triple gauge couplings
 - $\sigma(W) = 19 \text{ pb for 1 TeV MulC}$
 - $\circ \quad 2.1 \times 10^4 \, \text{leptonic W} \rightarrow \text{lv decays} \\ \text{into each lepton flavor for 10 fb}^{-1}$

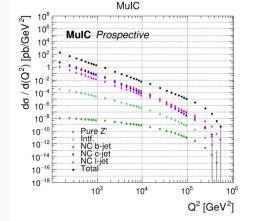
- Single top production
 - Direct measurement of |V_{tb}|
 - \circ $\sigma(t) = 1.0 \text{ pb for 1 TeV MulC}$

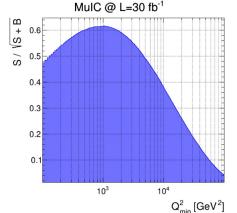
Potential for precision coupling measurements (and maybe mass measurements, with larger σ at higher \sqrt{s} and higher luminosity)

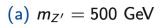

e.g.

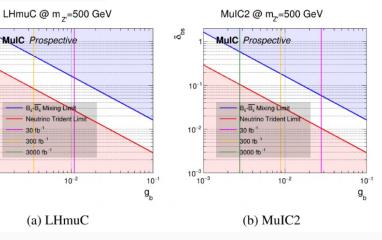
Probing Z' Models Relevant to LFU Violations

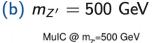
Consider Z' models and couplings discussed in M.Abdullah et al., <u>Phys. Rev. D 97</u>, 075035, that couple via O9 operator mostly to 2nd generation leptons (μ) and 2nd and 3rd generation quarks (s, b) to explain anomalies in B meson decays.

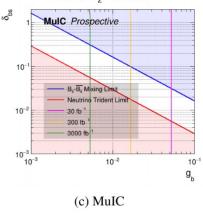

$$\mathcal{L} \supset Z'^{\mu} \left[g_{\mu} \bar{\mu} \gamma^{\mu} \mu + g_{\mu} \bar{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\mu} \right. \\ \left. + g_{b} \sum_{q=t,b} \bar{q} \gamma^{\mu} P_{L} q + \left(g_{b} \delta_{bs} \bar{s} \gamma^{\mu} P_{L} b + \text{h.c.} \right) \right]$$
(6)


- g_{μ} and g_s are flavor conserving couplings
- $\circ \delta_{bs}$ parameterizes non-flavor conserving couplings
- $\circ g_b \delta_{bs} g_\mu (100 \text{ GeV}/m_{Z'})^2 \simeq 1.3 \times 10^{-5}$ (5) to fit lepton flavor universality violations
- Consider interference with NC DIS
 - so flavor conserving coupling dominates




Probing Z' Models Relevant to LFU Violations


- Perform pseudo-analysis using a cut-and-count approach on the reconstructed Q² from the muon, optimized for sensitivity
- Apply b-tagging and mis-tagging efficiencies to final state jet
 - b, c, light: 70%, 10%, 1% 0
- **Derive expected limits**
- Generally need LHmuC (120 fb⁻¹) to be competitive with HL-LHC (3000 fb⁻¹)



Acosta et al. -- Potential of a TeV Scale Muon-Ion Collide

(a) LHmuC

MulC Prospective

B. B. Mixing Lim

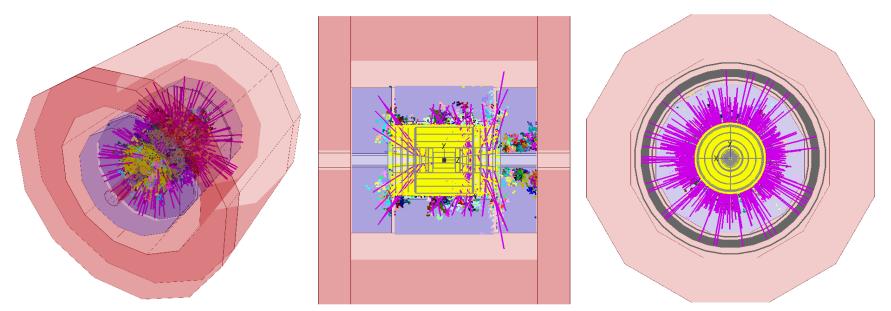
30 fb

300 fb

1000 5

leutrino Trident L

10-2

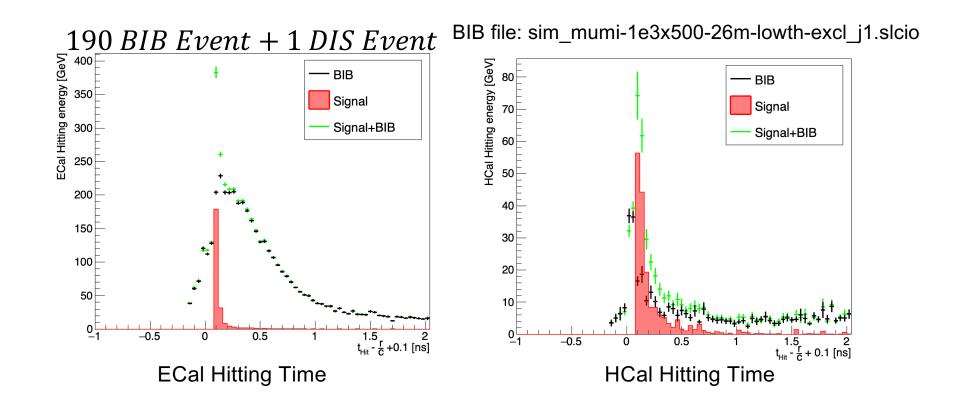

10-1

10-2

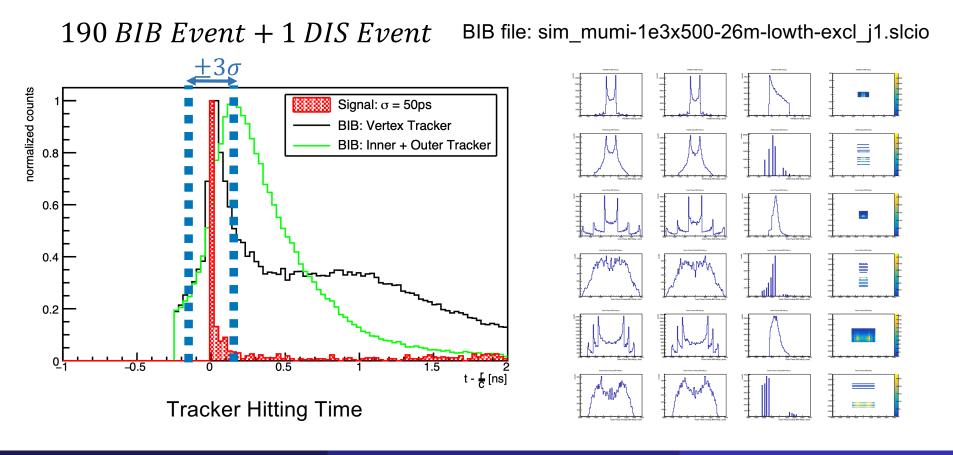
10-3

10-3

Full Simulation using IMCC Software


Only one side BIB is turned on

Our next step: Study the feasibility of experimental measurement with BIBs and detector requirements


Would need to also redo BIB simulation with one nozzle missing

Yijie, Wei, Darin

Full Simulation using IMCC Software — Workflow

Full Simulation using IMCC Software — Workflow

Yijie, Wei, Darin

MulC Synergies with a Muon Collider

- Siting a muon collider at a facility with a high energy hadron ring opens up an interesting additional, complementary science program
 - DIS and QCD, but also electroweak cross sections are comparable to those in μ + μ − collisions (Need 1.5X larger \sqrt{s})
- Re-use of existing hadron ring infrastructure helps allay some of the cost
 - Also simplifies the design to some degree
 - Can still benefit from a lower initial muon beam energy if collided with TeV scale hadron beam
- A MulC provides a science case for an initial muon collider demonstrator
 - Luminosity demands for proton/nuclear structure measurements at extreme parton density (low x) are much less stringent than the ultimate needs for Higgs studies, etc.
 - Interesting DIS measurements even for staged muon energies from ~100 GeV
- A MulC would have both particle physics and nuclear physics interests
 - Two communities to join in detector development and construction
 - Joint funding from particle and nuclear physics programs?
- Similar detector needs
 - Particularly interest in high eta muon spectrometer(s)

Future MulC Workshop

- We plan to organize a workshop on the topic of MuIC in 2023 at Rice University (secured some funding from the university)
- Aim to bring experimentalists, theorists, accelerator physicists from the HEP and NP communities together to discuss key issues in developing the muon-ion collider concept, as well as associated technologies
 - Synergistic with further muon collider discussions ?

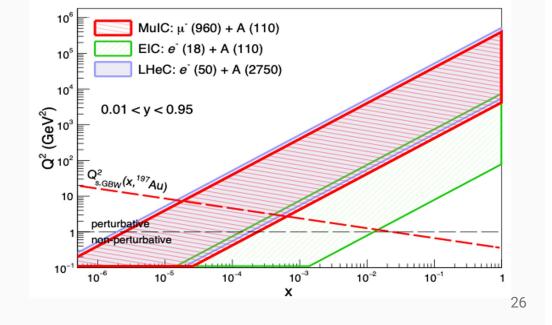
Summary

- Collisions of a TeV-scale muon beam with a high-energy proton/ion beam provides a novel way to explore new a regime in DIS at high Q² and low x
 - Two proposed options are at BNL/EIC ($\sqrt{s} = 1-2 \text{ TeV}$) and CERN/LHC ($\sqrt{s} = 6.5 \text{ TeV}$)
- Luminosity could be a challenge, and needs accelerator study
 - However, there is a science program to do even at low luminosity (new DIS regime)
- Precision electroweak, QCD, and SM particle production measurements (including Higgs) can be performed with sufficient integrated luminosity.
 - \circ H \rightarrow cc would be very challenging, however
- May be an interesting collider to study some BSM physics models
 - Z' study performed
 - Leptoquarks currently under study by an undergrad doing a senior thesis
- Many synergies with muon collider development, nuclear and particle physics programs
- One ring ("to rule them all") easier and cheaper than two?

Acknowledgements

• This work is in part supported by the Department of Energy, United States grant numbers DE-SC0010266 (D.A.), DE-SC0005131 (W.L.)

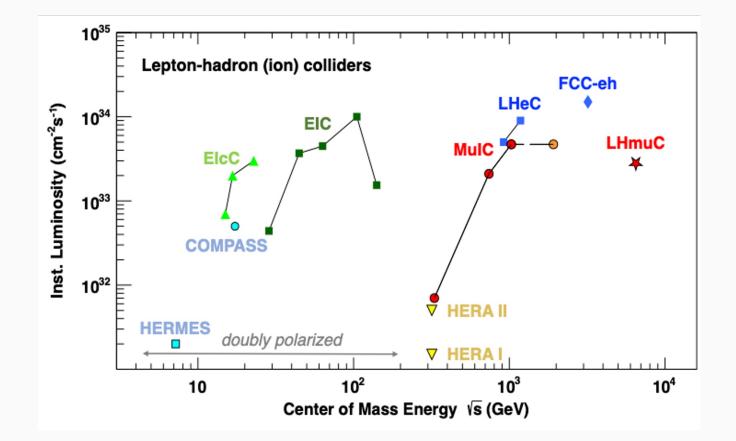
Backup

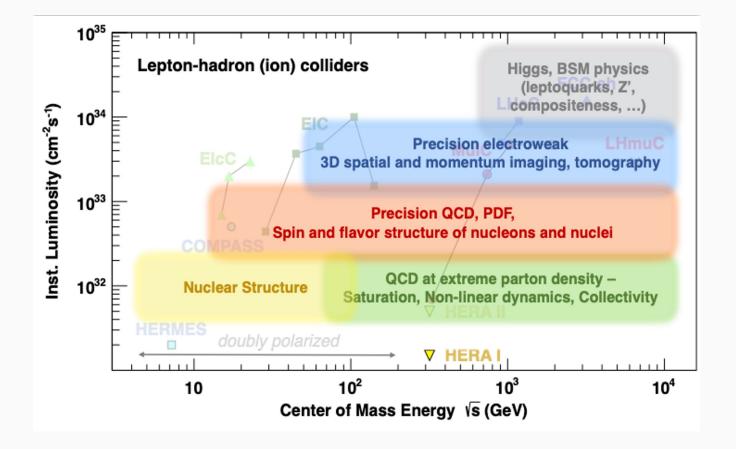

DIS Reach in x and Q² for *A* Collisions

Saturation scale:

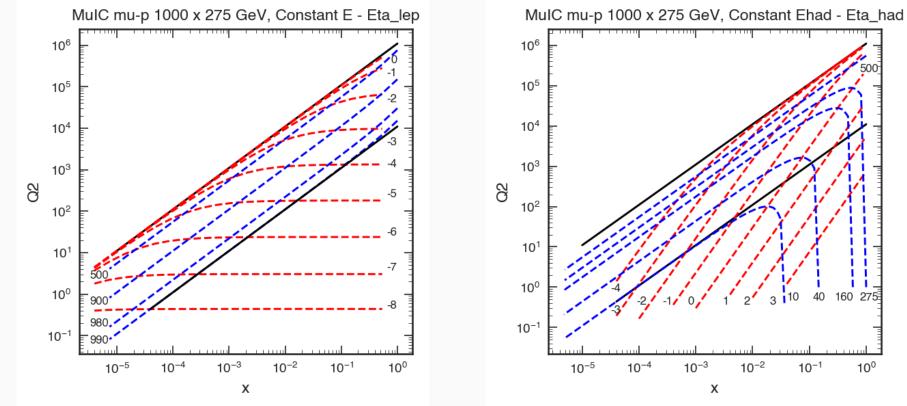
 $Q_{s}^{2}(A) = A^{1/3}Q_{s}^{2}(p)$

- Can explore well the predicted region of gluon saturation regime in ions at low x in the GBW model [<u>Phys. Rev. D 59, 014017 (1998)</u>] (and in protons, prev. slide)
- Also the MulC at BNL can scan a wide range of ion species, and beam polarization

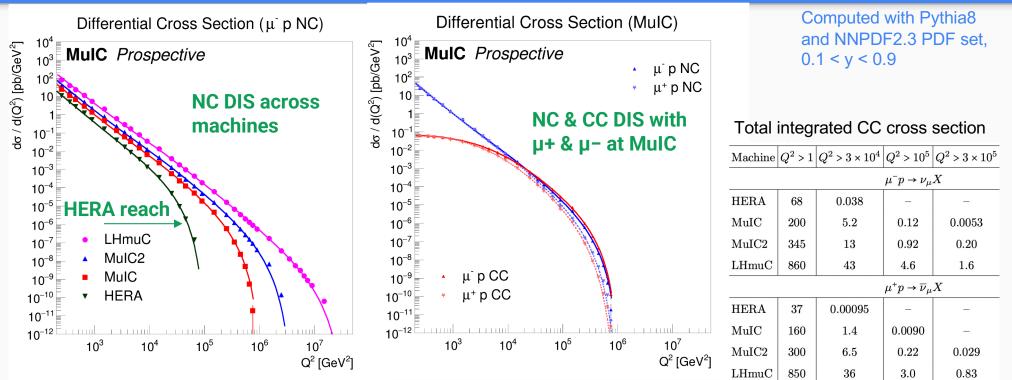




DIS Evolution and Physics Landscape


DIS Evolution and Physics Landscape

Kinematics


• Scattered muon

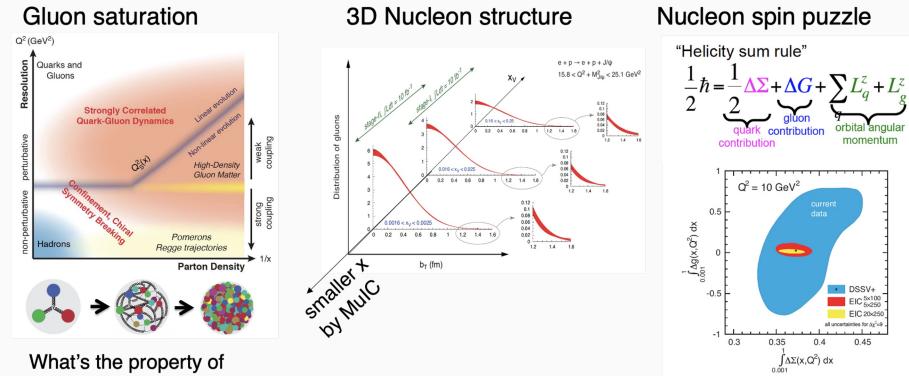
Scattered jet

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

DIS Differential Cross Sections in Q²

- Probes well beyond HERA and the electroweak scale
- Highest Q² requires largest integrated lumi (10³³-10³⁴ Hz/cm²)
 - But measurements low Q² and x can benefit from relatively low lumi orders of magnitude smaller

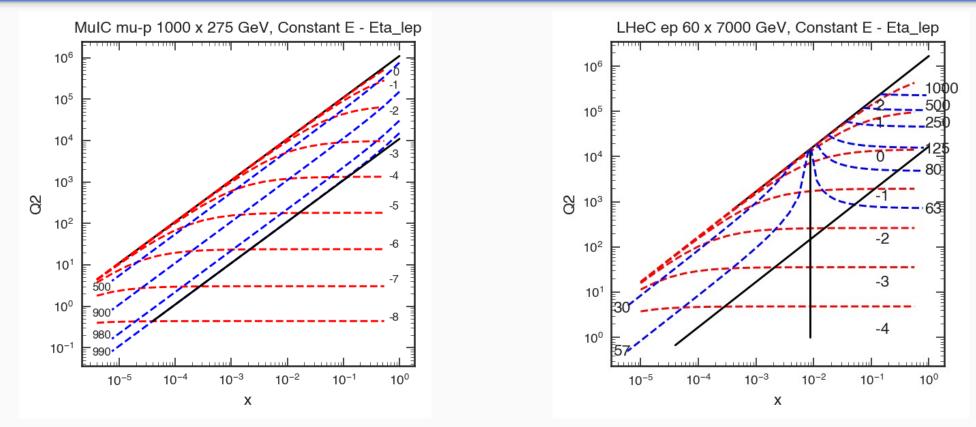
Nuclear Physics at the MulC


orbital angular

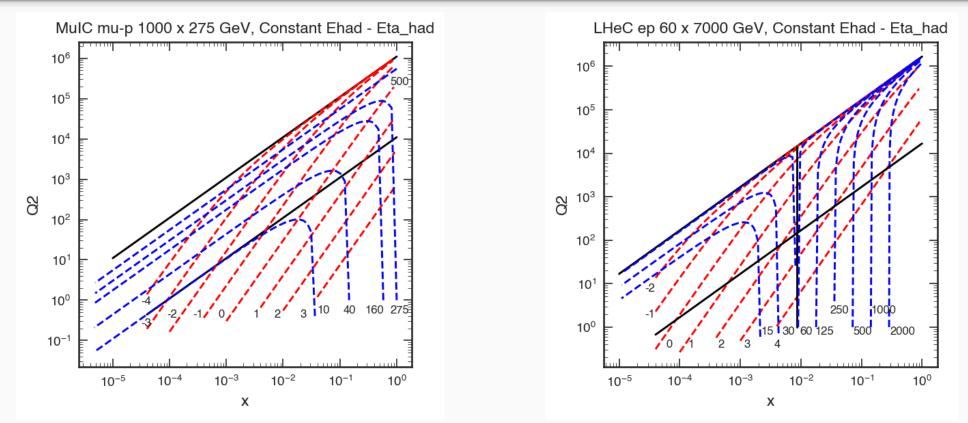
momentum


* DSSV+

EIC 5×100 5×250 EIC 20×250 all uncertainties for $\Delta \gamma^2 = 9$


0.45

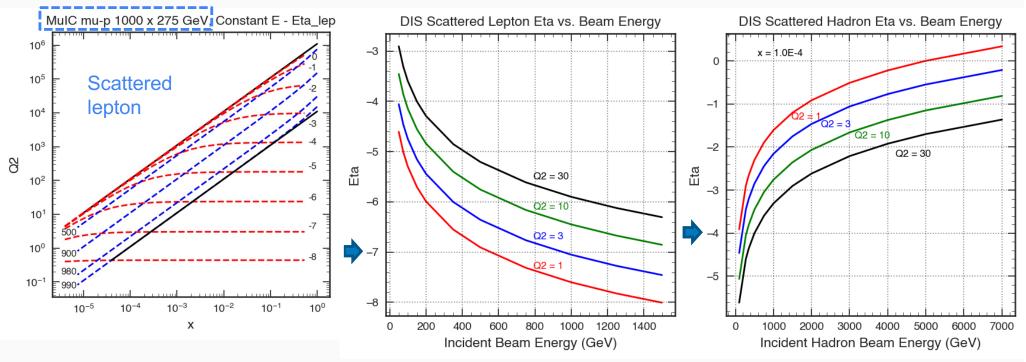
high-density gluon matter


Lepton DIS Kinematics of MuIC Compared to LHeC^N

• Much higher scattered muon energy and higher $|\eta|$ at MulC

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

Hadron DIS Kinematics of MuIC Compared to LHec N 🗞


Hadron system peaks more in proton direction and lower energy at low x for LHeC

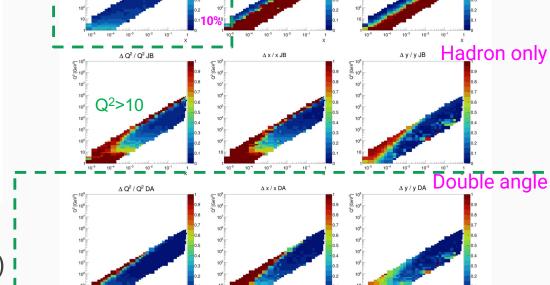
Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

DIS Scattering Kinematics at a µp Collider

• Hadronic system is more central, but toward muon beam direction

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider

DIS Resolution Studies



Ay/y Muon on Lepton only

Simple assumptions of detector resolutions to smear particles from PYTHIA 8

		Resolution			
Particle	Detector	$\frac{\sigma(p)}{p}$ or $\frac{\sigma(E)}{E}$	$\sigma(\eta, \varphi)$		
(Forward) Muons	e.g., MPGD	$0.01\% p \oplus 1\%$	0.2×10 ⁻³		
Charged particles $(\pi^{\pm}, K^{\pm}, p/\bar{p}, e^{\pm})$ Tracker + P		$0.1\% p \oplus 1\%$	$\left(\frac{2}{p} \oplus 0.2\right) \times 10^{-3}$		
Photons	EM Calorimeter	$\frac{10\%}{\sqrt{E}} \oplus 2\%$	$\frac{0.087}{\sqrt{12}}$		
Neutral hadrons (n, K_L^0)	Hadronic Calorimeter	$\frac{50\%}{\sqrt{E}} \oplus 10\%$	$\frac{0.087}{\sqrt{12}}$		

- Muons: 10% at 1 TeV, η > -7
- Hadrons: $-4 < \eta < 2.4$ (shielding)

Resolutions of reconstructed Q^2 , x and y with 3 methods

∆ x / x Muon Only

Q² vs. x plane:

 $\Delta Q^2 / Q^2$ Muon Only

DIS Differential Cross Sections in Q²

μ⁻ p NC

* μ+ p NC

.....

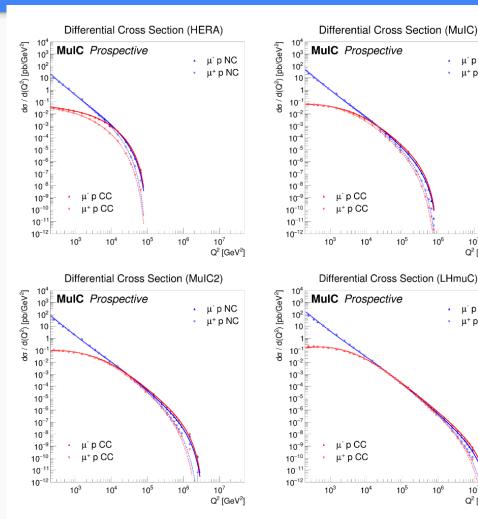
10⁷

• μ⁻ p NC

μ⁺ p NC

Q² [GeV²]

10⁶


10⁵

10⁵

10⁶

10⁷

Q² [GeV²]

Higgs Boson Cross Sections at MulC

TABLE XII. Cross sections, in fb, for 125 GeV Higgs boson production in $\mu^- p$ scattering. The μ^- beam energy is 960 GeV and the proton beam energy is 275 GeV. P is the polarization of the muon beam.

_	$\mathbf{P}=-40\%$	$\mathrm{P}=-20\%$	P = -10%	$\mathrm{P}=0~\%$	$\mathbf{P}=10\%$	$\mathrm{P}=20\%$	$\mathbf{P}=40\%$	$\mathbf{P}=100\%$
σ_{CC}	91.1	78.2	71.7	65.1	58.8	52.1	39.0	0
σ_{NC}	12.6	12.1	11.9	11.6	11.4	11.1	10.5	8.9
σ_{tH}	0.0224	0.0187	0.0174	0.0158	0.0139	0.0128	0.0096	0
total	103.7	90.3	83.6	76.7	70.2	63.2	49.5	8.9

TABLE XIII. Cross sections, in fb, for 125 GeV Higgs boson production in $\mu^+ p$ scattering. The μ^+ beam energy is 960 GeV and the proton beam energy is 275 GeV. P is the polarization of the muon beam.

	$\mathbf{P}=40\%$	$\mathrm{P}=20\%$	$\mathbf{P}=10\%$	$\mathrm{P}=0~\%$	$\mathrm{P}=-10\%$	$\mathrm{P}=-20\%$	P=-40%	P = -100%
σ_{CC}	45.0	38.2	35.6	32.1	28.9	25.6	19.2	0
σ_{NC}	12.4	12.0	11.7	11.6	11.3	11.0	10.6	9.1
σ_{tH}	0.0220	0.0190	0.0173	0.0157	0.0142	0.0127	0.0093	0
total	57.4	50.2	47.3	43.7	40.2	36.6	29.8	9.1

W Boson Cross Sections at MulC

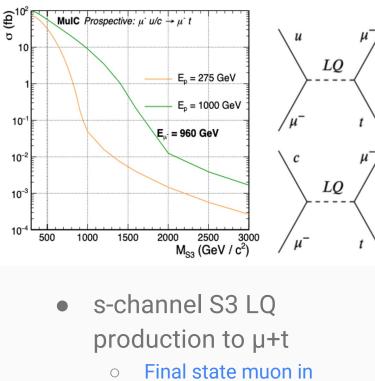
TABLE VIII. Cross sections for the $W^+\mu^-$ process in μ^-p collisions for different beam energy configurations and with different cutoffs on the scattered muon $p_{\rm T}$. The listed cross sections are in pb, with scale uncertainties and PDF $\oplus \alpha_s$ uncertainties. The μ^- beam energy is unpolarized in all cases.

$E_{\mu} \times E_p \ (\text{TeV}^2)$	Inclusive	$p_{\rm T}^\ell > 1~{\rm GeV}$	$p_{\rm T}^\ell > 2~{\rm GeV}$	$p_{\rm T}^\ell > 5~{\rm GeV}$
0.96×0.275	$8.93 \begin{array}{c} {}^{+1.0\%}_{-1.2\%} \begin{array}{c} {}^{+0.7\%}_{-0.7\%} \end{array}$	$2.29 \begin{array}{c} ^{+2.4\%}_{-2.5\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$	$1.86 \begin{array}{c} {}^{+2.6\%}_{-2.7\%} \begin{array}{c} {}^{+0.8\%}_{-0.8\%} \end{array}$	$1.32 \begin{array}{c} ^{+3.2\%}_{-3.1\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$
0.96×0.96	$22.4 \substack{+1.2\% \\ -1.7\% } \substack{+0.7\% \\ -0.7\%}$	$6.19 \begin{array}{c} {}^{+0\%}_{-0.4\%} \begin{array}{c} {}^{+0.7\%}_{-0.7\%} \end{array}$	$5.13 \substack{+0\% \\ -0.3\% } \substack{+0.7\% \\ -0.7\% }$	$3.77 {}^{+0.4\%}_{-0.7\%} {}^{+0.7\%}_{-0.7\%}$
1.5×7	$90.1 \begin{array}{c} ^{+6.0\%}_{-6.7\%} \begin{array}{c} ^{+1.0\%}_{-1.0\%} \end{array}$	$27.4 \ {}^{+4.6\%}_{-5.3\%} \ {}^{+0.8\%}_{-0.8\%}$	$23.1 \begin{array}{c} ^{+4.3\%}_{-5.0\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$	$17.6 \ {}^{+4.0\%}_{-4.6\%} \ {}^{+0.8\%}_{-0.8\%}$
1.5×13.5	$124 \begin{array}{c} ^{+7.4\%}_{-8.0\%} \begin{array}{c} ^{+1.1\%}_{-1.1\%} \end{array}$	$38.7 \substack{+5.9\% \\ -6.5\% } \substack{+0.9\% \\ -0.9\% }$	$32.6 \begin{array}{c} ^{+5.6\%}_{-6.3\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$25.0 \begin{array}{c} ^{+5.2\%}_{-5.9\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$
1.5×20	$150 \ {}^{+8.1\%}_{-8.8\%} \ {}^{+1.1\%}_{-1.1\%}$	$47.0 \begin{array}{c} ^{+6.6\%}_{-7.3\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$40.0 \begin{array}{c} ^{+6.4\%}_{-7.0\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$30.6 \substack{+5.9\% \\ -6.5\% } \substack{+0.9\% \\ -0.9\% }$
1.5×50	$225 \begin{array}{c} +9.9\% \\ -10\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$72.8 \substack{+8.4\% \\ -8.9\% } \substack{+1.0\% \\ -1.0\% }$	$61.7 \begin{array}{c} +8.2\% \\ -8.7\% \end{array} \begin{array}{c} +1.0\% \\ -1.0\% \end{array}$	$47.8 \begin{array}{c} ^{+7.7\%}_{-8.2\%} \begin{array}{c} ^{+1.0\%}_{-1.0\%} \end{array}$

TABLE IX. Cross sections for the $W^-\mu^-$ process in μ^-p collisions for different beam energy configurations and with different cutoffs on the scattered muon $p_{\rm T}$. The listed cross sections are in pb, with scale and PDF $\oplus \alpha_s$ uncertainties. The μ^- beam energy is unpolarized in all cases.

$E_{\mu} \times E_p \ (\text{TeV}^2)$	Inclusive	$p_{\rm T}^\ell > 1~{\rm GeV}$	$p_{\rm T}^\ell > 2~{\rm GeV}$	$p_{\mathrm{T}}^{\ell} > 5~\mathrm{GeV}$
0.96×0.275	$8.69 \begin{array}{c} ^{+0.7\%}_{-1.0\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$2.10 \begin{array}{c} ^{+1.6\%}_{-2.0\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$1.71 \begin{array}{c} ^{+1.8\%}_{-2.1\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$1.23 \ {}^{+2.4\%}_{-2.4\%} \ {}^{+0.9\%}_{-0.9\%}$
0.96×0.96	$21.2 \begin{array}{c} ^{+1.7\%}_{-2.3\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$	$5.76 \begin{array}{c} ^{+0.7\%}_{-1.4\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$	$4.79 \begin{array}{c} ^{+0.6\%}_{-1.2\%} \begin{array}{c} ^{+0.8\%}_{-0.8\%} \end{array}$	$3.57 {}^{+0.2\%}_{-0.7\%} {}^{+0.8\%}_{-0.8\%}$
1.5×7	$86.7 \begin{array}{c} ^{+6.7\%}_{-7.4\%} \begin{array}{c} ^{+1.0\%}_{-1.0\%} \end{array}$	$26.8 \substack{+5.5\% \\ -6.3\% } \substack{+0.9\% \\ -0.9\% }$	$22.8 \begin{array}{c} ^{+5.4\%}_{-6.1\%} \begin{array}{c} ^{+0.9\%}_{-0.9\%} \end{array}$	$17.8 \substack{+5.0\% \\ -5.7\% } \substack{+0.8\% \\ -0.8\% }$
1.5×13.5	$121 \begin{array}{c} +7.9\% \\ -8.6\% \end{array} \begin{array}{c} +1.1\% \\ -1.1\% \end{array}$	$38.3 \substack{+6.8\% \\ -7.6\% } \substack{+1.0\% \\ -1.0\% }$	$32.6 \begin{array}{c} +6.6\% \\ -7.4\% \end{array} \begin{array}{c} +0.9\% \\ -0.9\% \end{array}$	$25.6 \substack{+6.2\% \\ -6.9\% } \substack{+0.9\% \\ -0.9\% }$
1.5×20	$145 \ ^{+8.6\%}_{-9.3\%} \ ^{+1.2\%}_{-1.2\%}$	$47.0 \begin{array}{c} ^{+7.4\%}_{-8.2\%} \begin{array}{c} ^{+1.0\%}_{-1.0\%} \end{array}$	$40.1 \begin{array}{c} ^{+7.4\%}_{-8.1\%} \begin{array}{c} ^{+1.0\%}_{-1.0\%} \end{array}$	$31.6 \ {}^{+7.0\%}_{-7.7\%} \ {}^{+0.9\%}_{-0.9\%}$
1.5×50	$221 \ {}^{+11\%}_{-11\%} \ {}^{+1.4\%}_{-1.4\%}$	$73.6 \begin{array}{c} ^{+9.3\%}_{-9.9\%} \begin{array}{c} ^{+1.1\%}_{-1.1\%} \end{array}$	$63.3 \begin{array}{c} +9.0\% \\ -9.7\% \end{array} \begin{array}{c} +1.1\% \\ -1.1\% \end{array}$	$50.3 \ {}^{+8.6\%}_{-9.3\%} \ {}^{+1.2\%}_{-1.1\%}$

TABLE VI. Cross sections for the $W^-\nu_{\mu}$ process in μ^-p collisions for different beam energy configurat The μ^- beam energy is unpolarized in all cases.


$E_{\mu} \times E_p \ (\text{TeV}^2)$	σ (pb)	Scale unc.	$PDF \oplus \alpha_s$ unc.
0.96×0.275	1.80	$^{+2.8\%}_{-5.6\%}$	$^{+1.4\%}_{-1.4\%}$
0.96×0.96	7.47	$^{+7.9\%}_{-11\%}$	$^{+1.4\%}_{-1.4\%}$
1.5×7	52.8	$^{+15\%}_{-17\%}$	$^{+1.3\%}_{-1.3\%}$
1.5×13.5	79.8	$^{+16\%}_{-18\%}$	$^{+1.2\%}_{-1.2\%}$
1.5×20	100	$^{+17\%}_{-19\%}$	$^{+1.2\%}_{-1.2\%}$
1.5×50	167	$^{+19\%}_{-20\%}$	$^{+1.2\%}_{-1.2\%}$

Leptoquark Production with Bottom, Tau

- Studies focused on LQ models inspired by B and µ anomalies and LFV
- s-channel S3 LQ(b) production • t-channel S3 LQ(τ) production q μ^{-} LQ LQ(qJ) 10³ 0 σ (fb) **MulC** Prospective: $\mu^{-}q \rightarrow \tau^{-}q$ **MulC** Prospective: $\mu^{-}b \rightarrow \mu^{-}b$ 10² 10² E_n = 275 GeV 10 10 $E_{p} = 1000 \text{ GeV}$ 1 E_n = 275 GeV E. = 960 GeV 10-E_n = 1000 GeV 10⁻¹ 10-2 10^{-2} E. = 960 GeV 10 10 500 1000 1500 2000 2500 3000 400 600 800 1000 1200 1400 M_{S3} (GeV / c²) M_{S3} (GeV / c^2)

Acosta et al. - Potential of a TeV Scale Muon-Ion Collider

Leptoquark Production with Top

central region of detector

E. = 960 GeV 10-5 10-500 Events / bin ₁0₀ **MulC** Prospective: $\mu^{-} u/c \rightarrow \mu^{-} t$ M₅₃ = 300GeV 1000GeV p x 960GeV 10⁴ 10³ t u 10² Muon acceptance Track acceptance 10 -10 -8 -6 -4 -2 2 0 4 6 8 10 η

σ (fb)

10⁻¹

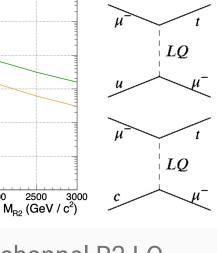
10⁻²

10⁻³

10-4

MulC Prospective: $\mu^- u/c \rightarrow \mu^- t$

E_n = 275 GeV


E_p = 1000 GeV

1500

2000

2500

1000

t-channel R2 LQ production to µ+t

> Potential limits still to be worked out

Acosta et al. -- Potential of a TeV Scale Muon-Ion Collider