Introduction to the Muon Collider Software Tutorial

P. Andreetto^(a), N. Bartosik^(b), M. Casarsa^(c), A. Gianelle^(a), S. Jindariani^(d), K. Krizka^(e), D. Lucchesi^(a,f), F. Meloni^(g), S. Pagan Griso^(h), L. Sestini^(a)

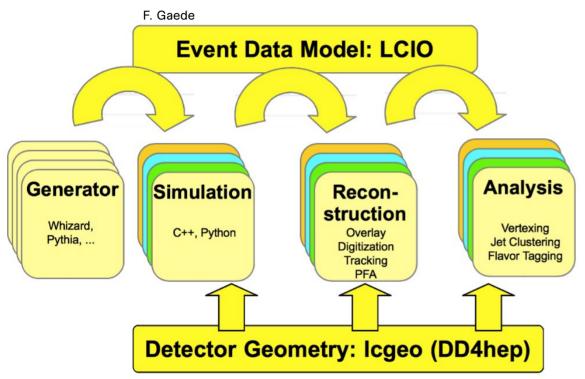
(a) INFN-Padua, Italy (b) INFN-Turin, Italy (c) INFN-Trieste, Italy (d) FNAL, USA (e) University of Birmingham, UK (f) University of Padua, Italy (g) DESY, Germany (h) LBNL, USA

Muon Collider Physics and Detector Workshop FNAL, December 14-16, 2022

Introductory remarks

- The software used for Muon Collider studies is based on ILCSoft, a common simulation/reconstruction framework originally developed by F. Gaede (DESY) for ILC and CLIC:
 - ILCSoft repository: https://github.com/iLCSoft;
 - documentation: https://github.com/iLCSoft/ilcsoftDoc.
- Our approach was to start with CLIC's ILCSoft, a complete, GRIDready, well supported and documented framework, and adjust it to the different experimental challenges of a Muon Collider:
 - MuonColliderSoft repository:

```
https://github.com/MuonColliderSoft.
```



ILCSoft main components

- LCIO (Linear Collider I/O): provides the event data model and the persistency framework.
 - github.com/iLCSoft/LCIO.
- DD4hep (Detector Description for High Energy Physics):
 detector geometry description for both the full simulation and the reconstruction step and interface to GEANT4.
 - dd4hep.web.cern.ch/dd4hep.
- MARLIN (Modular Analysis & Reconstruction for the LINear collider): is the application framework, based on processors dedicated to specific tasks.
 - github.com/iLCSoft/Marlin.

ILCSoft workflow

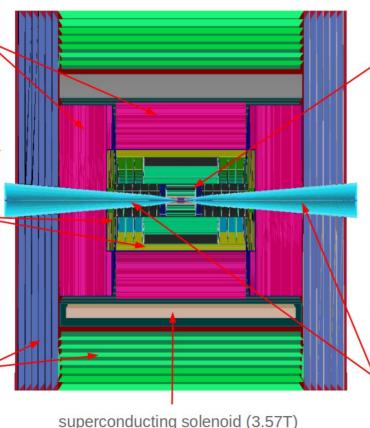
- The ILCSoft workflow consist of four main steps:
 - event generation;
 - detector response simulation;
 - event digitization + reconstruction;
 - event analysis.

Generation step

- Not part of the ILCSoft framework, we have to run our favorite event generator by ourselves.
- And better to get advice from our theorist colleagues before: generating $\mu\mu \to X$ processes in the multi-TeV regime might be in general tricky.

Simulation step

hadronic calorimeter


- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;
- 7.5 λ_I.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- ♦ 22 X_0 + 1 λ_1 .

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

tracking system

Vertex Detector:

- double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
- 25x25 µm² pixel Si sensors.

Inner Tracker:

- 3 barrel layers and 7+7 endcap disks;
- 50 μm x 1 mm macropixel Si sensors.

Outer Tracker:

- 3 barrel layers and 4+4 endcap disks;
- 50 μm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

- Includes a detector model.
- The detector response simulation is based on GEANT4.

Digitization and reconstruction step

Digitization:

- tracker: Gaussian smearing of SIM hits' positions and times, readout time window;
- calorimeters: simple digitization with an energy calibration constant, an energy threshold and a selection time window;
- muon detectors: simple digitization with an energy calibration constant, an energy threshold and energy saturation.

Reconstruction:

- tracks: pattern recognition and track finding based on a Combinatorial Kalman Filter implemented in ACTS;
- calorimeter clusters: Pandora Particle Flow Algorithm to recognize different patterns of hits released by different particle types in the high granularity calorimeters;
- jets: PF-objects clusterization implemented in FastJet with a K_t algorithm with R=0.5.

Analysis step

- Many options available:
 - production of ROOT ntuples from the SLCIO files and analysis with C++ macros or PyROOT;
 - histogramming with a dedicated Marlin processor running on the SLCIO files;
 - access and analysis of the SLCIO files with Python API.

Today's program

Muon Collider Software Tutorial

- Computing Setup
- Event Generation
- Simulation
- Digitization and Reconstruction
 - Basics
 - Closer look into the configuration
 - Useful tools
 - Realistic Beam-Induced-Background (BIB)
- Study of Object Performance
 - Histogramming in Marlin (LCIO input files)
 - LCTuple (plain ROOT ntuples)
 - Python Analysis of SLCIO Files

- Algorithm Development
 - Adding a Marlin Processor
 - Tracking Custom Packages
- Advanced Topics
 - Modifying the Detector Geometry
 - Event Displays
 - BIB overlay optimisation
 - Running on batch systems
 - Tweaking particle lifetimes
 - Developing with VSCode
 - Jet reconstruction

Contacts

For any questions, issues, doubts:

muon_collider_software@lists.infn.it