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• This is an expansion on previous work done on a Kalman Filter study for ND-GAr-Lite:

1. Dune Collaboration meeting 26th January 2022 Nd-GAr parallel session: 

https://indico.fnal.gov/event/50215/contributions/232480/

2. ND-GAr weekly meeting 15th March 2022:           

https://indico.fnal.gov/event/53600/contributions/236685/

3. DUNE Collaboration meeting 18th  May 2022: 

https://indico.fnal.gov/event/50217/contributions/241519/

4. ND-GAr weekly meeting 9th August 2022:                                                                    

https://indico.fnal.gov/event/55842/

• In today’s presentation:

1. Introduce Toy Monte-Carlo tool used for the study (fastMCKalman)

2. Introduce concept for an ALICE-based “radial” Kalman Filter for ND-GAr

3. Show results of early tests and compare with ND-GAr-Lite as a sanity check

https://indico.fnal.gov/event/50215/contributions/232480/
https://indico.fnal.gov/event/53600/contributions/236685/
https://indico.fnal.gov/event/50217/contributions/241519/
https://indico.fnal.gov/event/55842/
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• fastMCKalman: Toy Monte Carlo tool created to test and 

develop reconstruction algorithms for TPC detectors (credit 

to Professor Marian Ivanov 

https://github.com/miranov25/fastMCKalman ):

• Generate particles with given initial total momentum, 

charge, angle and initial position

• Propagate step by step the helix parameters 

(𝑦, 𝑥, 𝑠𝑖𝑛𝜙, tan𝜆,
𝑞

𝑝𝑇
) until particle leaves inner tracking 

volume (Note: 𝜙 azimuthal angle, 𝜆 dip-angle, 𝑝𝑇
transverse momentum in 𝑦𝑧 plane)

• At each step simulate Energy Loss and Multiple 

Scattering (both can be switched on and off)

• The 10k muon test sample was produced using the same 

charges, momenta and initial xy positions as the sample 

analyzed for latest KF study on ND-GAr-Lite 

(https://indico.fnal.gov/event/55842/ )

https://github.com/miranov25/fastMCKalman
https://indico.fnal.gov/event/55842/
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Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Energy loss simulated in three steps:

1. Calculate 𝑑𝐸/𝑑𝑥 with Bethe-Bloch and convert to dP/dx

2. Calculate momentum loss over trajectory in small “momentum-loss” steps: 𝑛𝑠𝑡𝑒𝑝𝑠 = 1 + ( Τ𝑑𝑝 𝑑𝑥 × Δ𝑥)/𝑠𝑡𝑒𝑝

(𝑠𝑡𝑒𝑝 = 0.005 𝐺𝑒𝑉/𝑐)

3. Convert momentum loss first into energy loss ΔE = 𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛 then into multiplicative factor to update 

𝑞/𝑝𝑇:

𝑞

𝑝𝑇
∗= 𝑐𝑃4 = 1 +

Δ𝐸

𝑝𝑚𝑒𝑎𝑛
2 (Δ𝐸 + 2 × 𝐸𝑖𝑛)

• Note: These formulas are the same as the ones used by Geant4

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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𝜃0 =
13.6𝑀𝑒𝑉

𝛽𝑝
𝑧 𝑥/𝑋0 1 + 0.038ln(𝑥/𝑋0)

Molière Formula (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Multiple Scattering smearing simulated in three steps:

1. Calculate width of the angular gaussian distribution produced by MS: 𝜃0 from Molière 

formula

2. Propagate the error to the relevant Helix parameters, obtaining their respective 𝜎’s 

(𝜎𝑠𝑖𝑛𝜙, 𝜎𝑡𝑎𝑛𝜆, 𝜎𝑞/𝑝𝑇)

3. Smear parameters with Gauss distribution having for width the respective 𝜎’s

• Note: These formulas are the same as the ones used by Geant4

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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• Kalman filter: iterative Bayesian algorithm which mediates between system knowledge and 

measurement. Each iteration divided in three steps:

1. Make A Priori prediction of the state of the system using evolution model for the particle’s trajectory

2. Calculate Residual: distance between measurement and prediction

3. Mediate between the a priori prediction and the measurement calculating Kalman Gain and produce 

A Posteriori estimate

Ƹ𝑠𝑘
+ = Ƹ𝑠𝑘

− + 𝐾𝑘 ǁ𝑟

A Posteriori A Priori Residual: distance between 

measurement and a priori

Kalman Gain: small if confidence in 

model (determined by covariance 

matrix P) high, large if confidence low

Kalman Filter 

Update Equation

Note: See back-up for further reading
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• Use parametrization used in ALICE: state vector  

updated by the Kalman filter is s =

(𝑦, 𝑥, 𝑠𝑖𝑛𝜙, tan𝜆,
𝑞

𝑝𝑇
)

• ALICE uses no approximations in the propagation, 

unlike current ND-GAr model which uses small 

angle approximation (for full description check 

back-up and first ND-GAr-Lite presentation 

https://indico.fnal.gov/event/50215/contributions/2

32480/ )

𝑘

𝑘

𝜙0

𝜙1

𝜙1

𝑘 ∗ cos𝜙0 𝑘 ∗ cos𝜙1

𝑘 ∗ sin𝜙1

𝑘 ∗ sin𝜙0

𝑧

𝑦

𝜃 = 𝜙1 − 𝜙0

𝑟

𝑟

https://indico.fnal.gov/event/50215/contributions/232480/
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• Use parametrization used in ALICE: state vector  

updated by the Kalman filter is s =

(𝑦, 𝑥, 𝑠𝑖𝑛𝜙, tan𝜆,
𝑞

𝑝𝑇
)

• ALICE uses no approximations in the propagation, 

unlike current ND-GAr model which uses small 

angle approximation (for full description check 

back-up and first ND-GAr-Lite presentation 

https://indico.fnal.gov/event/50215/contributions/2

32480/ )

• Kalman filter propagated radially: before each 

propagation, the coordinate system is rotated by an 

angle 𝛼 = tan(𝑦/𝑧), so that the track point “sits” 

on the local 𝑧 axis (i.e. 𝑧 coordinate becomes the 

radius from center of the detector)

𝑧

𝑦

𝑧𝑙

𝑦𝑙

𝛼

https://indico.fnal.gov/event/50215/contributions/232480/
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𝑧

𝑦

• Local 𝑠𝑖𝑛𝜙 defines two 𝑦𝑧 semi-planes with “mirrored 

representations”: the line separating the two is the one connecting 

the center of the detector and the center of curvature of the track

• As the track approaches one of the two semi-planes, 𝑠𝑖𝑛𝜙 reaches a 

point where it cannot be propagated further: sin𝜙 ∈ [−1,1]

• Once the limit is reached, the state-vector and Covariance associated 

with the last reconstructed track point are “mirrored”:

𝑤𝑖𝑡ℎ 𝑅 =

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

𝑠𝑘+1
− = 𝑅𝑠𝑘

+
𝑃𝑘+1
− = 𝑅𝑃𝑘

+𝑅𝑇

• Finally, the local x coordinate is propagated by calculating the arch

between the two mirrored points:

𝑥𝑘+1
− = 𝑥𝑘

+ + 𝑎𝑟𝑐ℎ ∗ 𝑡𝑎𝑛𝜆
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Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Energy loss correction applied to helix fit:

1. Get 𝑑𝐸/𝑑𝑥 with Bethe-Bloch and evaluate momentum loss over trajectory in small “momentum-loss” steps

2. Calculate multiplicative factor to update 𝑞/𝑝𝑇:

𝑞

𝑝𝑇
∗= 𝑐𝑃4 = 1 +

Δ𝐸

𝑝𝑚𝑒𝑎𝑛
2 (Δ𝐸 + 2 × 𝐸𝑖𝑛)

2. Add factor to diagonal element of 5x5 Covariance Matrix 𝑃 correspondent to 𝑞/𝑝𝑇 (found through error propagation):

𝑃 4 4 +=
𝜎𝐸

𝑝𝑚𝑒𝑎𝑛
2 ×

𝑞

𝑝𝑇

2

• Note 1: These formulas are the same as the ones used by Geant4

• Note 2: Applied to both Kalman Filter “step-by-step” and Seeding “globally”

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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𝜃0 =
13.6𝑀𝑒𝑉

𝛽𝑝
𝑧 𝑥/𝑋0 1 + 0.038ln(𝑥/𝑋0)

Molière Formula (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Multiple Scattering correction applied to Helix fit:

1. Calculate width of the angular gaussian distribution produced by MS: 𝜃0 from Molière formula

2. Propagate the error to the relevant Helix parameters, obtaining their respective 𝜎’s (𝜎𝑠𝑖𝑛𝜙, 𝜎𝑡𝑎𝑛𝜆, 𝜎𝑞/𝑝𝑇)

3. Update covariance matrix diagonal elements:

𝑃 2 2 += 𝜎𝑠𝑖𝑛𝜙
2

𝑃 3 3 += 𝜎tan 𝜆
2

𝑃 4 4 += 𝜎𝑞/𝑝𝑇
2

• Note 1: These formulas are the same as the ones used by Geant4

• Note 2: Applied to both Kalman Filter “step-by-step” and Seeding “globally”

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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(𝑧𝐶 , 𝑦𝐶)

𝑧

𝑦

𝑥
𝑟

𝑧0

𝜙0

(𝑧0, 𝑦0)

(𝑧1, 𝑦1)

(𝑧2, 𝑦2)

• Seeding for Kalman done with simple 3-point 
helix fit:
• 𝑐 = 1/𝑟 and sin 𝜙0 estimated by finding 

(𝑧𝑐 , 𝑦𝐶) and 𝑟 of the 𝑦𝑧 plane circumference:

sin𝜙0 =
𝑧0
𝑟

𝑐 = 1/𝑟
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• tan 𝜆 from the 𝑦𝑧 plane arc between the first two 

points and the correspondent movement in the 𝑥
direction:

𝑧

𝑦

𝑥

(𝑧0, 𝑦0)

(𝑧1, 𝑦1)

(𝑧2, 𝑦2)

𝑑𝑥

𝑎𝑟𝑐

𝜆

𝑑𝜙/2 𝑑𝜙/2

tan 𝜆 =
𝑑𝑥

𝑎𝑟𝑐
=

𝑑𝑥

𝑑𝜙 ∗ 𝑟

• Seeding for Kalman done with simple 3-point 
helix fit:
• 𝑐 = 1/𝑟 and sin 𝜙0 estimated by finding 

(𝑧𝑐 , 𝑦𝐶) and 𝑟 of the 𝑦𝑧 plane circumference:

sin𝜙0 =
𝑧0
𝑟

𝑐 = 1/𝑟

• Note: Energy loss and MS corrections applied 

similarly to Kalman Filter
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Toy-MC Helix Kalman Filter

Point Smear 𝑑𝐸/𝑑𝑥 MS Helix Result 𝑑𝐸/𝑑𝑥 Corr MS Corr Helix Seed 𝑑𝐸/𝑑𝑥 Corr MS Corr

0.5 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓

0.5a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓

1.5 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓

1.5a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓

1.5b ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

1.5.1 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

1.5.1a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

1.5.1b ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓

2.5 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓

2.5a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓

2.5d ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

2.5.3 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

2.5.3a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

2.5.3d ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓

3.5 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

3.5a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

3.5b ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓

3.5c ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓

3.5d ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓

3.5 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓

3.5a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓

3.5b ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓

3.5c ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓ ✓

3.5d ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓

3.5.2 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓

3.5.2a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓

3.5.2b ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓ ✓

3.5.2c ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.5.2d ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓ ✓

• Test naming convention:

• 𝑛 = Kalman Filter using 

ideal seed 

• 𝑛. 5 = ALICE 3-points 

Helix Fit

• 𝑛. 𝑥. 1 = Helix Fit E-loss 

correction

• 𝑛. 𝑥. 2 = Helix Fit

E−loss+MS correction

• 𝑛. 𝑥. 3 = Helix Fit MS

correction

• 𝑛. 𝑥. 𝑦 𝑎 = Kalman Filter 

using Helix Seed

• 𝑛. 𝑥. 𝑦 𝑏 = Kalman Filter 

+ E-loss correction using 

Helix Seed

• 𝑛. 𝑥. 𝑦 𝑐 = Kalman Filter 

+ E-loss + MS corrections 

using Helix Seed

• 𝑛. 𝑥. 𝑦 𝑑 = Kalman Filter+ 

MS corrections using 

Helix Seed

• Note: Same ND-GAr-Lite sample 

used for all the tests; For different 

𝑛 we have different Toy Monte 

Carlo set-ups (E-loss, MS etc.)
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• Compare results in terms of fractional residuals for the helix parameters (𝑦, 𝑥, 𝑠𝑖𝑛𝜙, tan𝜆,
𝑞

𝑝𝑇
) and the total momentum 𝑝

and check that the Covariance Matrix describes the sample

• For this set of tests, no energy loss nor multiple scattering are simulated in the Toy Monte Carlo and a gaussian smearing 

𝜎𝑥𝑦 = 0.1𝑐𝑚 is applied to the points

• Compare 2 reconstruction results:

• Simple ALICE 3-point method with no corrections (Test 0.5)

• Kalman Filter applied over simple ALICE 3-point method with no corrections in either (Test 0.5a)

Toy-MC Helix Kalman Filter

Point Smear dE/dx MS Helix 

Result

𝑑𝐸/𝑑𝑥
Corr

MS Corr Helix 

Seed

𝑑𝐸/𝑑𝑥
Corr

MS Corr

0.5 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓

0.5a ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓
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• To check the quality of the estimation 

of the covariance matrix we perform a 

Pull Test

• Pull test: residuals of parameters 

divided by the square-root of the 

correspondent diagonal matrix, should 

form a Gauss distribution with 𝜎 ∼ 1

• Helix seed estimates uncertainties 

effectively for all 5 parameters
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• To check the quality of the estimation 

of the covariance matrix we perform a 

Pull Test

• Pull test: residuals of parameters 

divided by the square-root of the 

correspondent diagonal matrix, should 

form a Gauss distribution with 𝜎 ∼ 1

• Kalman Filter propagates uncertainties 

effectively for all 5 parameters
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• Given a probability distribution Q on 𝑅𝑁 with mean Ԧ𝜇 and 

positive-definite covariance matrix P the Mahalanobis

distance (M-Distance) of a point Ԧ𝑠 from Q is defined as: 

𝑑𝑀 = Ԧ𝑠 − Ԧ𝜇 𝑇𝑃(Ԧ𝑠 − Ԧ𝜇)

• The M-Distances of a set of points belonging to the 

distribution Q will follow a 𝜒2 distribution with N degrees of 

freedom

• To check if a covariance matrix of a distribution Q is correctly 

estimated one can calculate 𝑑𝑀 for a certain number of 

“points” (in our case state vectors of tracks) and check if they 

follow the correct 𝜒2 distribution (NB: this checks the whole 

matrix including correlations, unlike standard Pull-Test. 

Thanks to Lukas Koch for the suggestion)

• Easy way to visualize this is a Quantile VS Quantile (QQ) 

plot, in our case quantiles of the 𝑑𝑀 distribution VS quantiles 

of the 𝜒2 distribution: if we get a straight line the estimated  

Covariance describes the distribution

QQ-plot for 3-point Helix Fit for test 0.5
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• Given a probability distribution Q on 𝑅𝑁 with mean Ԧ𝜇 and 

positive-definite covariance matrix P the Mahalanobis

distance (M-Distance) of a point Ԧ𝑠 from Q is defined as: 

𝑑𝑀 = Ԧ𝑠 − Ԧ𝜇 𝑇𝑃(Ԧ𝑠 − Ԧ𝜇)

• The M-Distances of a set of points belonging to the 

distribution Q will follow a 𝜒2 distribution with N degrees of 

freedom

• To check if a covariance matrix of a distribution Q is correctly 

estimated one can calculate 𝑑𝑀 for a certain number of 

“points” (in our case state vectors of tracks) and check if they 

follow the correct 𝜒2 distribution (NB: this checks the whole 

matrix including correlations, unlike standard Pull-Test. 

Thanks to Lukas Koch for the suggestion)

• Easy way to visualize this is a Quantile VS Quantile (QQ) 

plot, in our case quantiles of the 𝑑𝑀 distribution VS quantiles 

of the 𝜒2 distribution: if we get a straight line the estimated  

Covariance describes the distribution

QQ-plot for 3-point Kalman Filter for test 0.5a. 

Slight under-estimation in the tails probably due 

to approximations done in “mirror” portion of 

the tracking
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• For this set of tests E-loss is introduced in the Toy MC simulation

• Compare 2 reconstruction results:

• Helix Fit with E-Loss corrections (Test 1.5)

• Kalman Filter applied over simple Helix Fit with E-loss corrections in both (Test 1.5a)

Toy-MC Helix Kalman Filter

Point Smear dE/dx MS Helix 

Result

𝑑𝐸/𝑑𝑥
Corr

MS Corr Helix 

Seed

𝑑𝐸/𝑑𝑥
Corr

MS Corr

1.5.1 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓

1.5.1b ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓
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QQ-plot for Kalman Filter + E-loss correction 

Covariance Estimation (Test 1.5.1b)

QQ-plot for Helix Fit + E-loss correction 

Covariance Estimation (Test 1.5.1)

• The M-Distance plots for 

these tests show a slight over-

estimation of the errors

• This might be due to 

implementation of the E-loss 

correction in the Seeding 

(probably not in the KF 

propagation, see next test) or 

to the approximations made 

in the mirroring step of the 

propagation. Further 

investigation needed
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• For this set of tests E-loss and Multiple Scattering are introduced in the Toy MC simulation

• Compare 2 reconstruction results:

• Helix Fit with E-Loss + MS corrections (Test 1.5)

• Kalman Filter applied over simple Helix Fit with E-loss + MS corrections in both (Test 1.5a)

Toy-MC Helix Kalman Filter

Point Smear dE/dx MS Helix 

Result

𝑑𝐸/𝑑𝑥
Corr

MS Corr Helix 

Seed

𝑑𝐸/𝑑𝑥
Corr

MS Corr

2.5.1 ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓ ✓

2.5.1c ✓ 𝜎𝑦𝑧 = 0.1𝑐𝑚 ✓ ✓ ✓ ✓ ✓ ✓ ✓
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QQ-plot for Kalman Filter + E-loss correction 

Covariance Estimation (Test 1.5.1b)

QQ-plot for Helix Fit + E-loss correction 

Covariance Estimation (Test 1.5.1)

• The M-Distance plots for 

these tests show a significant 

over-estimation of the errors 

in the Seeding, that is then 

smoothed out by the Kalman 

Filter propagation

• This supports the hypothesis 

that the problem in the 

implementation resides with 

the seeding portion of the 

algorithm
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ND-GAr-Lite ND-GAr

• The 10k muon test sample was produced using the same charges, momenta and initial xy positions as the sample analyzed for latest KF 

study on ND-GAr-Lite (https://indico.fnal.gov/event/55842/ )

• As a sanity check we can compare the momentum reconstruction performance found for ND-GAr, with the one found for ND-GAr-Lite: 

as expected the performance in ND-GAr is significantly improved (resolution spread reduced by a factor of about ∼ 2.5 and bias 

reduced by a factor of ∼ 5)
• NB: some events that couldn’t be reconstructed in ND-GAr-Lite due to lack of hit points, are instead reconstructed in ND-GAr, but this 

will have to be checked on a proper MC

https://indico.fnal.gov/event/55842/


FEDERICO
BATTISTI

SUMMARY AND CONCLUSIONS

35

• Introduced a concept for a ALICE-based Kalman Filter for ND-GAr and a toy Monte Carlo tool 

(fastMCKalman) which allows easy development for reconstruction algorithms in a TPC 

environment

• Main Takeaways:

1. Toy Monte-Carlo Tests give mostly consistent and encouraging results

2. Comparisons performed against ND-GAr-Lite show a very significant performance 

improvement as expected

• Next steps:

1. Apply Kalman Filter to garsoft Monte Carlo data, ideally particles produced in neutrino 

on GAr interactions (if you know of trusted samples that already exist, please point me 

towards it!)

2. If the testing is successful, implement the new Kalman Filter in garsoft (enable/disable 

with a fhicl parameter?) and write a technical paper on the full algorithm 

3. Perform physics sensitivity studies using the new algorithm
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• Direct comparison between the results of this study and the CDR results is not appropriate as the momentum spectra are 

quite different (Sample for this study is mono-energetic with initial momenta 𝑝 = 1𝐺𝑒𝑉/𝑐 , same as the one used in 

(https://indico.fnal.gov/event/55842/)

• Note: tracks in test sample are consistently about double the length as the ones in CDR, which is unexpected   

ND CDR
Current Study: Test 1.5.1b

https://indico.fnal.gov/event/55842/
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1

𝜌

𝑑𝐸

𝑑𝑥
= 𝐾 ×

𝑍

𝐴
×
𝑧2

𝛽2
1

2
𝑙𝑛

2𝑚𝑒𝑐
2𝛾2𝛽2𝑊𝑚𝑎𝑥

𝐼2
− 𝛽2 −

𝛿

2
[GeV/(g/𝑐𝑚2)]

Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• 𝜌 = 1.032 𝑔/𝑐𝑚3 Plastic scintillator density

• 𝐾 = 4𝜋𝑁𝐴𝑟𝑒
2𝑚𝑒𝑐

2 = 0.307 075 𝑀𝑒𝑉 𝑚𝑜𝑙−1𝑐𝑚2 Bethe Bloch constant coefficient

• Τ𝑍 𝐴 = 0.54141 𝑚𝑜𝑙/𝑔 Mean atomic number/mass of plastic scintillator

• 𝑧 Atomic number of incident particle

• 𝑚𝑒𝑐
2 =0.511 MeV                                                                 Mass of electron

• 𝑊𝑚𝑎𝑥 = 2𝑚𝑒𝑐
2 𝛽2𝛾2 Low energy approximation of maximum energy transfer

• 𝐼 = 64.7 × 10−9 𝐺𝑒𝑉 Mean excitation energy

𝛿

2
=

0
ln𝛽𝛾 − Τ1 2𝐶

ln 𝛽𝛾 − Τ1 2𝐶 + Τ1 2𝐶 − 2.303𝑋0 ×
2.303𝑋1 − ln𝛽𝛾

2.303(𝑋1−𝑋0)

3

𝑤𝑖𝑡ℎ 𝐶 = 2 − ln
28.816 × 10−9 𝜌(𝑍/𝐴)

𝐼

𝑙𝑛𝛽𝛾 < 2.303𝑥0

𝑙𝑛𝛽𝛾 > 2.303𝑥1

𝑙𝑛𝛽𝛾 ∈ [2.303𝑥0, 2.303𝑥1]

𝑥0 = 0.1469 𝑥1 = 2.49

1st and 2nd junction points for plastic scintillator

DENSITY 

CORRECTION

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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1

𝜌

𝑑𝐸

𝑑𝑥
= 𝐾 ×

𝑍

𝐴
×
𝑧2

𝛽2
1

2
𝑙𝑛

2𝑚𝑒𝑐
2𝛾2𝛽2𝑊𝑚𝑎𝑥

𝐼2
− 𝛽2 −

𝛿

2
[GeV/(g/𝑐𝑚2)]

Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Step by step procedure:

1. Convert into: Τ𝑑𝑝 𝑑𝑥 = Τ𝑑𝐸 𝑑𝑥 × 𝛽−1

2. Calculate number of steps: 𝑛𝑠𝑡𝑒𝑝𝑠 = 1 + ( Τ𝑑𝑝 𝑑𝑥 × Δ𝑥)/𝑠𝑡𝑒𝑝 with 𝑠𝑡𝑒𝑝 = 0.005

3. Calculate step-wise total momentum loss: Δ𝑝𝑡𝑜𝑡 = σ
𝑖=0

𝑛𝑠𝑡𝑒𝑝𝑠 Δ𝑝𝑖 = σ
𝑖=0

𝑛𝑠𝑡𝑒𝑝𝑠 dp

dxi
Δ𝑥𝑖

4. Calculate total energy loss Δ𝐸 = 𝐸𝑖𝑛 − 𝑝𝑜𝑢𝑡
2 +𝑚2 with 𝑝𝑜𝑢𝑡 = 𝑝𝑖𝑛 − Δ𝑝𝑡𝑜𝑡

5. Apply multiplicative factor:

𝑞

𝑝𝑇
∗= 𝑐𝑃4 = 1 +

Δ𝐸

𝑝𝑚𝑒𝑎𝑛
2 (Δ𝐸 + 2 × 𝐸𝑖𝑛)

6. Apply correction to covariance matrix:

𝑃 4 4 +=
𝜎𝐸

𝑝𝑚𝑒𝑎𝑛
2 ×

𝑞

𝑝𝑇

2

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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𝜃0 =
13.6𝑀𝑒𝑉

𝛽𝑝
𝑧 𝑥/𝑋0 1 + 0.038ln(𝑥/𝑋0)

Molière Formula (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• 𝑋0 = 42.54𝑐𝑚 Radiation length of plastic scintillator in cm

• 𝑥 is the step length

• 𝑧 is the charge of incident particle

• Formulas for propagated 𝜎’s:

𝜎sin 𝜙 = 𝜃0 cos𝜙 1 + tan2 𝜆

𝜎tan 𝜆 = 𝜃0(1 + tan2 𝜆)

𝜎𝑞/𝑝𝑇 = 𝜃0 tan 𝜆
𝑞

𝑝𝑇

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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1

𝜌

𝑑𝐸

𝑑𝑥
= 𝐾 ×

𝑍

𝐴
×
𝑧2

𝛽2
1

2
𝑙𝑛

2𝑚𝑒𝛾
2𝛽2𝑇𝑚𝑎𝑥

𝐼2
− 𝛽2 −

𝛿

2
[GeV/(g/cm^2)]

Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Energy loss correction:

1. Use multiplicative factor 𝑐𝑃4 (see slide 7) to update 𝑞/𝑝𝑇

2. Add factor to diagonal element of 5x5 Covariance Matrix 𝑃 correspondent to 𝑞/𝑝𝑇 (found through error 

propagation):

𝑃 4 4 +=
𝜎𝐸

𝑝𝑚𝑒𝑎𝑛
2 ×

𝑞

𝑝𝑇

2

• NOTE: 𝜎𝐸 = 𝑘 × |Δ𝐸| where 𝑘 is a tunable parameter set at 0.07

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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𝜃0 =
13.6𝑀𝑒𝑉

𝛽𝑝
𝑧 𝑥/𝑋0 1 + 0.038ln(𝑥/𝑋0)

Molière Formula (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

• Multiple Scattering smearing simulated in three steps:

1. Obtain parameter 𝜎’s (𝜎𝑠𝑖𝑛𝜙, 𝜎𝑡𝑎𝑛𝜆, 𝜎𝑞/𝑝𝑇) through error propagation as described in slide 6

2. Update covariance matrix diagonal elements:

𝑃 2 2 += 𝜎𝑠𝑖𝑛𝜙
2

𝑃 3 3 += 𝜎tan 𝜆
2

𝑃 4 4 += 𝜎𝑞/𝑝𝑇
2

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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1. Make a priori predictions for the current step’s state and covariance matrix using the a posteriori best estimate of 

the previous step (i.e. updated using measurement)

𝑠𝑘
− = 𝑓 𝑠𝑘−1

+ , 𝑋𝑘−1

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄

𝐹𝑘−1 = ቤ
𝜕𝑓

𝜕𝑠
𝑠𝑘−1
+ ,𝑋𝑘−1

𝑄

JACOBIAN PROCESS NOISE 

COVARIANCE

STATE VECTOR

COVARIANCE MATRIX

Note: In the first iteration step we use step 0 estimates for the state vector and the covariance matrix (𝑠0, 𝑃0), which 

can be made very roughly 
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2. Calculate the measurement residual and the Kalman Gain

𝑦𝑘 = 𝑚𝑘
ℎ − 𝐻(𝑠𝑘

−)

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇 𝑅 + 𝐻𝑃𝑘

−𝐻𝑇 −1

3. Update the estimate

𝑠𝑘
+ = 𝑠𝑘

− + 𝐾𝑘 𝑦

𝑃𝑘
+ = 1 − 𝐾𝑘𝐻 𝑃𝑘

−

RESIDUAL

KALMAN GAIN

STATE VECTOR

COVARIANCE MATRIX

𝑅

MEASUREMENT 

NOISE COVARIANCE

𝐻

CONVERSION 

MATRIX

Note: the conversion matrix is 

needed to make the dimensions 

of vectors and matrixes turn out 

right. For exemple if 𝑠𝑘
ℎ is a 2-

D vector and 𝑠𝑘
− is 5-D, then H 

would be a 2 × 5 matrix:

𝐻 = (
1 0 0
0 1 0

0 0
0 0

)

Note: in the case 

where R is a null 

matrix 𝑠𝑘
+ = 𝑠𝑘

ℎ

and 𝑃𝑘
+ = 0



FEDERICO
BATTISTI

KALMAN FILTER MODEL

47

• Use parametrization used in ALICE: free parameter z, state vector s = (𝑦, 𝑥, 𝑠𝑖𝑛𝜙, tan𝜆,
𝑞

𝑝𝑇
) ( 𝜙 azimuthal angle, 𝜆

dip-angle, 𝑝𝑇 transverse momentum in 𝑦𝑧 plane), evolution function:

𝑦1 = 𝑦0 +
(𝑠𝑖𝑛𝜙0 + 𝑠𝑖𝑛𝜙1)

(cos𝜙0 + cos𝜙1)
∗ 𝑑𝑧

𝑘

𝑘

𝜙0

𝜙1

𝜙1

𝑘 ∗ cos𝜙0 𝑘 ∗ cos𝜙1

𝑘 ∗ sin𝜙1

𝑘 ∗ sin𝜙0

𝑧

𝑦

𝑑𝑦

𝑑𝑧
=

𝑘 ∗ (𝑠𝑖𝑛𝜙0 + 𝑠𝑖𝑛𝜙1)

𝑘 ∗ (cos𝜙0 + cos𝜙1)

0

1
𝑑𝑥 = 𝑎𝑟𝑐ℎ ∗ 𝑡𝑎𝑛𝜆 = 𝜃 ∗ 𝑟 ∗ 𝑡𝑎𝑛𝜆

𝜃 = 𝜙1 − 𝜙0 = arcsin sin 𝜙1 − 𝜙0 =
= arcsin(cos𝜙0 sin𝜙1 − cos𝜙1 sin𝜙0)

𝑥1 = 𝑥0 + tan 𝜆 ∗
𝑟

𝑞
∗ arcsin(cos𝜙0 sin𝜙1 − cos𝜙1 sin 𝜙0)

𝜃 = 𝜙1 − 𝜙0

𝑟

𝑟
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• Use parametrization used in ALICE: free parameter z, state vector (𝑦, 𝑥, 𝑠𝑖𝑛𝜙, tan𝜆,
𝑞

𝑝𝑇
) ( 𝜙 azimuthal angle, 𝜆 dip-

angle, 𝑝𝑇 transverse momentum in 𝑦𝑧 plane), evolution function:

𝑧

𝑦

2

𝑟 ∗ sin𝜙0

𝑟 ∗ sin𝜙1

𝑑𝑧

𝑟

𝑟𝜙0

𝜙1

𝑑𝑧 = 𝑟 ∗ sin𝜙1 − 𝑟 ∗ sin𝜙0

sin𝜙1 = sin𝜙0 +
𝑑𝑧

𝑟

3 4& are static
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• 𝑐 = 1/𝑟 and sin𝜙0 estimated by finding (𝑧𝑐 , 𝑦𝐶)
and 𝑟 of the 𝑦𝑧 plane circomference passing 

through the first, last and middle hit point of the 

particle trajectory

• After traslating the coordinate system to have the 

origin on the first point 𝑧0, 𝑦0 → (0,0) we have 

the circumference equations:

൞

𝑧𝐶
2 + 𝑦𝐶

2 = 𝑟2

𝑧1 − 𝑧𝐶
2 + 𝑦1 − 𝑦𝐶

2 = 𝑟2

𝑧2 − 𝑧𝐶
2 + 𝑦2 − 𝑦𝐶

2 = 𝑟2

(𝑧𝐶 , 𝑦𝐶)

𝑧

𝑦

𝑥
𝑟

𝑧0

𝜙0

(𝑧0, 𝑦0)

(𝑧1, 𝑦1)

(𝑧2, 𝑦2)

𝑧𝐶 =
1

2
𝑧2 − 𝑦2

𝑧1 𝑧1 − 𝑧2 + 𝑦1(𝑦1 − 𝑦2)

𝑧2𝑦1 − 𝑧1𝑦2

𝑦𝐶 =
1

2
𝑧2 − 𝑦2

𝑧1 𝑧1 − 𝑧2 + 𝑦1(𝑦1 − 𝑦2)

𝑧2𝑦1 − 𝑧1𝑦2

𝑟 = 𝑧𝐶
2 + 𝑦𝐶

2

sin 𝜙0 =
𝑧0
𝑟

𝑐 = 1/𝑟
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• We evaluate tan 𝜆 from the 𝑦𝑧 plane arc between the 

first two points and the correspondent movement in 

the 𝑥 direction (magnetic field direction) using 𝑟
estimate from previous step:

𝑑𝜙 = 2 arcsin
𝑐ℎ𝑜𝑟𝑑

2𝑟

= 2 arcsin
𝑦1 − 𝑦0

2 + 𝑧1 − 𝑧0
2

2𝑟 𝑧

𝑦

𝑥

(𝑧0, 𝑦0)

(𝑧1, 𝑦1)

(𝑧2, 𝑦2)

𝑑𝑥

𝑎𝑟𝑐

𝜆

𝑑𝜙/2 𝑑𝜙/2

tan 𝜆 =
𝑑𝑥

𝑎𝑟𝑐
=

𝑑𝑥

𝑑𝜙 ∗ 𝑟
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• Given parameter estimation from global helix fit, estimate uncertainties through error propagation

• Uncertainties associated with 𝑥 and 𝑦: 𝜎𝑥𝑦 ; 𝑧 free parameter with no uncertainty 𝜎𝑧 = 0 (as in the Kalman filter)

• Formula for sin𝜙0 estimation is function of 𝑓(𝑧0, 𝑦0, 𝑧1, 𝑦1, 𝑧2, 𝑦2) but since 𝜎𝑧 = 0, consider only 𝑓(𝑦0, 𝑦1, 𝑦2) →
From error propagation we get:

𝜎sin 𝜙0
=

𝜕𝑓(𝑦0, 𝑦1, 𝑦2)

𝜕𝑦0

2

𝜎𝑥𝑦
2 +

𝜕𝑓(𝑦0, 𝑦1, 𝑦2)

𝜕𝑦2

2

𝜎𝑥𝑦
2 +

𝜕𝑓(𝑦0, 𝑦1, 𝑦2)

𝜕𝑦3

2

𝜎𝑥𝑦
2

• This can be approximated as:

𝜎sin 𝜙0
=

𝑓(𝑦0 + 𝜎𝑥𝑦 , 𝑦1, 𝑦2)

𝜎𝑥𝑦

2

𝜎𝑥𝑦
2 +

𝑓(𝑦0, 𝑦1 + 𝜎𝑥𝑦 , 𝑦2)

𝜎𝑥𝑦

2

𝜎𝑥𝑦
2 +

𝑓(𝑦0, 𝑦1, 𝑦2 + 𝜎𝑥𝑦)

𝜎𝑥𝑦

2

𝜎𝑥𝑦
2
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• Repeat the process with other parameters to get respective uncertainties 

• Estimate for covariance matrix 𝑃0 is diagonal matrix with:

𝑃0 =

𝜎𝑥𝑦
2 0 0 0 0

0 𝜎𝑥𝑦
2 0 0 0

0 0 𝜎𝑠𝑖𝑛𝜙
2 0 0

0 0 0 𝜎𝑡𝑎𝑛𝜆
2 0

0 0 0 0 𝜎𝑞/𝑝𝑇
2

• Note: off-diagonal elements could also be calculated, but are not at the moment


