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Å This is an expansion on previous work done on a Kalman Filter study for ND-GAr-Lite:

1. Dune Collaboration meeting 26th January 2022 Nd-GAr parallel session: 

https://indico.fnal.gov/event/50215/contributions/232480/

2. ND-GAr weekly meeting 15th March 2022:           

https://indico.fnal.gov/event/53600/contributions/236685/

3. DUNE Collaboration meeting 18th  May 2022: 

https://indico.fnal.gov/event/50217/contributions/241519/

4. ND-GAr weekly meeting 9th August 2022:                                                                    

https://indico.fnal.gov/event/55842/

Å In todayôs presentation:

1. Introduce Toy Monte-Carlo tool used for the study (fastMCKalman)

2. Introduce concept for an ALICE-based ñradialò Kalman Filter for ND-GAr

3. Show results of early tests and compare with ND-GAr-Lite as a sanity check

https://indico.fnal.gov/event/50215/contributions/232480/
https://indico.fnal.gov/event/53600/contributions/236685/
https://indico.fnal.gov/event/50217/contributions/241519/
https://indico.fnal.gov/event/55842/
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Å fastMCKalman: Toy Monte Carlo tool created to test and 

develop reconstruction algorithms for TPC detectors (credit 

to Professor Marian Ivanov 

https://github.com/miranov25/fastMCKalman):

Å Generate particles with given initial total momentum, 

charge, angle and initial position

Å Propagate step by step the helix parameters 

ώȟὼȟίὭὲ‰ȟÔÁÎ‗ȟ until particle leaves inner tracking 

volume (Note: ‰azimuthal angle, ‗dip-angle, ὴ
transverse momentum in ώᾀplane)

Å At each step simulate Energy Loss and Multiple 

Scattering (both can be switched on and off)

Å The 10k muon test sample was produced using the same 

charges, momenta and initial xy positions as the sample 

analyzed for latest KF study on ND-GAr-Lite 

(https://indico.fnal.gov/event/55842/)

https://github.com/miranov25/fastMCKalman
https://indico.fnal.gov/event/55842/
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Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

Å Energy loss simulated in three steps:

1. Calculate ὨὉȾὨὼwith Bethe-Bloch and convert to dP/dx

2. Calculate momentum loss over trajectory in small ñmomentum-lossò steps: ὲ ρ ϳὨὴὨὼɝὼȾίὸὩὴ

(ίὸὩὴπȢππυὋὩὠȾὧ)
3. Convert momentum loss first into energy loss ɝ% Ὁ Ὁ then into multiplicative factor to update 

ήȾὴ:

ή

ὴ
ᶻ ὧὖτ ρ

ɝὉ

ὴ
ɝὉ ς Ὁ

Å Note: These formulas are the same as the ones used by Geant4

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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Molière Formula (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

Å Multiple Scattering smearing simulated in three steps:

1. Calculate width of the angular gaussian distribution produced by MS: — from Molière 

formula

2. Propagate the error to the relevant Helix parameters, obtaining their respective „ôs 
(„ ȟ„ ȟ„Ⱦ )

3. Smear parameters with Gauss distribution having for width the respective „ôs

Å Note: These formulas are the same as the ones used by Geant4

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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Å Kalman filter: iterative Bayesian algorithm which mediates between system knowledge and 

measurement. Each iteration divided in three steps:

1. Make A Priori prediction of the state of the system using evolution model for the particleôs trajectory

2. Calculate Residual:distance between measurement and prediction

3. Mediate between the a priori prediction and the measurement calculating Kalman Gain and produce 

A Posteriori estimate

Ƕί Ƕί ὑ ǿὶ

A Posteriori A Priori Residual: distance between 

measurement and a priori

Kalman Gain: small if confidence in 

model (determined by covariance 

matrix P) high, large if confidence low

Kalman Filter 

Update Equation

Note: See back-up for further reading
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ÅUse parametrization used in ALICE: state vector  

updated by the Kalman filter is Ó

ώȟὼȟίὭὲ‰ȟÔÁÎ‗ȟ

ÅALICE uses no approximations in the propagation, 

unlike current ND-GAr model which uses small 

angle approximation (for full description check 

back-up and first ND-GAr-Lite presentation 

https://indico.fnal.gov/event/50215/contributions/2

32480/)
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https://indico.fnal.gov/event/50215/contributions/232480/
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ÅUse parametrization used in ALICE: state vector  

updated by the Kalman filter is Ó

ώȟὼȟίὭὲ‰ȟÔÁÎ‗ȟ

ÅALICE uses no approximations in the propagation, 

unlike current ND-GAr model which uses small 

angle approximation (for full description check 

back-up and first ND-GAr-Lite presentation 

https://indico.fnal.gov/event/50215/contributions/2

32480/)

ÅKalman filter propagated radially: before each 

propagation, the coordinate system is rotated by an 

angle ‌ ÔÁÎώȾᾀ, so that the track point ñsitsò 
on the local ᾀaxis (i.e. ᾀcoordinate becomes the 

radius from center of the detector)

ᾀ

ώ

ᾀ

ώ

‌

https://indico.fnal.gov/event/50215/contributions/232480/
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Å Local ίὭὲ‰defines two ώᾀsemi-planes with ñmirrored 

representationsò: the line separating the two is the one connecting 

the center of the detector and the center of curvature of the track

Å As the track approaches one of the two semi-planes, ίὭὲ‰reaches a 

point where it cannot be propagated further: ÓÉÎ‰ᶰ ρȟρ

Å Once the limit is reached, the state-vector and Covariance associated 

with the last reconstructed track point are ñmirroredò:

ύὭὸὬὙ

ρ π π π π
π ρ π π π
π π ρ π π
π π π ρ π
π π π π ρ

ί Ὑί ὖ ὙὖὙ

Å Finally, the local x coordinate is propagated by calculating the arch

between the two mirrored points:

ὼ ὼ ὥὶὧὬzὸὥὲ‗
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Bethe-Bloch (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

Å Energy loss correction applied to helix fit:

1. Get ὨὉȾὨὼwith Bethe-Bloch and evaluate momentum loss over trajectory in small ñmomentum-lossò steps

2. Calculatemultiplicative factor to update ήȾὴ:

ή

ὴ
ᶻ ὧὖτ ρ

ɝὉ

ὴ
ɝὉ ς Ὁ

2. Add factor to diagonal element of 5x5 Covariance Matrix ὖcorrespondent to ήȾὴ (found through error propagation):

ὖττ
„

ὴ

ή

ὴ

Å Note 1: These formulas are the same as the ones used by Geant4

Å Note 2: Applied to both Kalman Filter ñstep-by-stepò and Seeding ñgloballyò

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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Molière Formula (PDG)

https://pdg.lbl.gov/2005

/reviews/passagerpp.pdf

Å Multiple Scattering correction applied to Helix fit:

1. Calculate width of the angular gaussian distribution produced by MS: — from Molière formula

2. Propagate the error to the relevant Helix parameters, obtaining their respective „ôs („ ȟ„ ȟ„Ⱦ )

3. Update covariance matrix diagonal elements:

ὖςς „

ὖσσ „

ὖττ „Ⱦ

Å Note 1: These formulas are the same as the ones used by Geant4

Å Note 2: Applied to both Kalman Filter ñstep-by-stepò and Seeding ñgloballyò

https://pdg.lbl.gov/2005/reviews/passagerpp.pdf
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Å Seeding for Kalman done with simple 3-point 
helix fit :
Å ὧ ρȾὶand ÓÉÎ‰ estimated by finding 

ᾀȟώ and ὶof the ώᾀplane circumference:

ÓÉÎ‰
ᾀ

ὶ
ὧ ρȾὶ



FEDERICO
BATTISTI

GLOBAL HELIX FIT AND INITIAL COVARIANCE ESTIMATION

16

Å ÔÁÎ‗from the ώᾀplane arc between the first two 

points and the correspondent movement in the ὼ
direction:
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Å Seeding for Kalman done with simple 3-point 
helix fit :
Å ὧ ρȾὶand ÓÉÎ‰ estimated by finding 

ᾀȟώ and ὶof the ώᾀplane circumference:

ÓÉÎ‰
ᾀ

ὶ
ὧ ρȾὶ

Å Note: Energy loss and MS corrections applied 

similarly to Kalman Filter
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Toy-MC Helix Kalman Filter

Point Smear ὨὉȾὨὼ MS Helix Result ὨὉȾὨὼCorr MS Corr Helix Seed ὨὉȾὨὼCorr MS Corr

0.5 ṉ„ πȢρὧά ṉ

0.5a ṉ„ πȢρὧά ṉ

1.5 ṉ„ πȢρὧά ṉ ṉ

1.5a ṉ„ πȢρὧά ṉ ṉ

1.5b ṉ„ πȢρὧά ṉ ṉ ṉ

1.5.1 ṉ„ πȢρὧά ṉ ṉ ṉ

1.5.1a ṉ„ πȢρὧά ṉ ṉ ṉ

1.5.1b ṉ„ πȢρὧά ṉ ṉ ṉ ṉ

2.5 ṉ„ πȢρὧά ṉ ṉ

2.5a ṉ„ πȢρὧά ṉ ṉ

2.5d ṉ„ πȢρὧά ṉ ṉ ṉ

2.5.3 ṉ„ πȢρὧά ṉ ṉ ṉ

2.5.3a ṉ„ πȢρὧά ṉ ṉ ṉ

2.5.3d ṉ„ πȢρὧά ṉ ṉ ṉ ṉ

3.5 ṉ„ πȢρὧά ṉ ṉ ṉ

3.5a ṉ„ πȢρὧά ṉ ṉ ṉ

3.5b ṉ„ πȢρὧά ṉ ṉ ṉ ṉ

3.5c ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ

3.5d ṉ„ πȢρὧά ṉ ṉ ṉ ṉ

3.5 ṉ„ πȢρὧά ṉ ṉ ṉ ṉ

3.5a ṉ„ πȢρὧά ṉ ṉ ṉ ṉ

3.5b ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ

3.5c ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ ṉ

3.5d ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ

3.5.2 ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ

3.5.2a ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ

3.5.2b ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ ṉ

3.5.2c ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ ṉ ṉ

3.5.2d ṉ„ πȢρὧά ṉ ṉ ṉ ṉ ṉ ṉ

Å Test naming convention:

Å ὲ Kalman Filter using 

ideal seed 

Å ὲȢυ ALICE 3-points 

Helix Fit

Å ὲȢὼȢρ Helix Fit E-loss 

correction

Å ὲȢὼȢς HelixFit

Eīloss+MScorrection

Å ὲȢὼȢσ HelixFitMS

correction

Å ὲȢὼȢώὥ Kalman Filter 

using Helix Seed

Å ὲȢὼȢώὦ Kalman Filter 

+ E-loss correction using 

Helix Seed

Å ὲȢὼȢώὧ Kalman Filter 

+ E-loss + MS corrections 

using Helix Seed

Å ὲȢὼȢώὨ Kalman Filter+ 

MS corrections using 

Helix Seed

Å Note: Same ND-GAr-Lite sample 

used for all the tests; For different 

ὲwe have different Toy Monte 

Carlo set-ups (E-loss, MS etc.)
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Å Compare results in terms of fractional residuals for the helix parameters ώȟὼȟίὭὲ‰ȟÔÁÎ‗ȟ and the total momentum ὴ

and check that the Covariance Matrix describes the sample

Å For this set of tests, no energy loss nor multiple scattering are simulated in the Toy Monte Carlo and a gaussian smearing 

„ πȢρὧάis applied to the points

Å Compare 2 reconstruction results:

Å Simple ALICE 3-point method with no corrections (Test 0.5)

Å Kalman Filter applied over simple ALICE 3-point method with no corrections in either (Test 0.5a)

Toy-MC Helix Kalman Filter

Point Smear dE/dx MS Helix 

Result

ὨὉȾὨὼ
Corr

MS Corr Helix 

Seed

ὨὉȾὨὼ
Corr

MS Corr

0.5 ṉ„ πȢρὧά ṉ

0.5a ṉ„ πȢρὧά ṉ
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Å To check the quality of the estimation 

of the covariance matrix we perform a 

Pull Test

Å Pull test: residuals of parameters 

divided by the square-root of the 

correspondent diagonal matrix, should 

form a Gauss distribution with „Ḑρ

Å Helix seed estimates uncertainties 

effectively for all 5 parameters
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Å To check the quality of the estimation 

of the covariance matrix we perform a 

Pull Test

Å Pull test: residuals of parameters 

divided by the square-root of the 

correspondent diagonal matrix, should 

form a Gauss distribution with „Ḑρ

Å Kalman Filter propagates uncertainties 

effectively for all 5 parameters
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Å Given a probability distribution Q on Ὑ with mean ᴆ‘and 

positive-definite covariance matrix P the Mahalanobis

distance(M-Distance) of a point ᴆίfrom Q is defined as: 

Ὠ ᴆί ᴆ‘ ὖᴆί ᴆ‘

Å The M-Distances of a set of points belonging to the 

distribution Q will follow a … distribution with N degrees of 

freedom

Å To check if a covariance matrix of a distribution Q is correctly 

estimated one can calculate Ὠ for a certain number of 

ñpointsò (in our case state vectors of tracks) and check if they 

follow the correct … distribution(NB: this checks the whole 

matrix including correlations, unlike standard Pull-Test. 

Thanks to Lukas Koch for the suggestion)

Å Easy way to visualize this is a Quantile VS Quantile (QQ) 

plot, in our case quantiles of the Ὠ distribution VS quantiles 

of the … distribution: if we get a straight line the estimated  

Covariance describes the distribution

QQ-plot for 3-point Helix Fit for test 0.5
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Å Given a probability distribution Q on Ὑ with mean ᴆ‘and 

positive-definite covariance matrix P the Mahalanobis

distance(M-Distance) of a point ᴆίfrom Q is defined as: 

Ὠ ᴆί ᴆ‘ ὖᴆί ᴆ‘

Å The M-Distances of a set of points belonging to the 

distribution Q will follow a … distribution with N degrees of 

freedom

Å To check if a covariance matrix of a distribution Q is correctly 

estimated one can calculate Ὠ for a certain number of 

ñpointsò (in our case state vectors of tracks) and check if they 

follow the correct … distribution(NB: this checks the whole 

matrix including correlations, unlike standard Pull-Test. 

Thanks to Lukas Koch for the suggestion)

Å Easy way to visualize this is a Quantile VS Quantile (QQ) 

plot, in our case quantiles of the Ὠ distribution VS quantiles 

of the … distribution: if we get a straight line the estimated  

Covariance describes the distribution

QQ-plot for 3-point Kalman Filter for test 0.5a. 

Slight under-estimation in the tails probably due 

to approximations done in ñmirrorò portion of 

the tracking
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Å For this set of testsE-loss is introduced in the Toy MC simulation

Å Compare 2 reconstruction results:

Å Helix Fit with E-Loss corrections (Test 1.5)

Å Kalman Filter applied over simple Helix Fit with E-loss corrections in both (Test 1.5a)

Toy-MC Helix Kalman Filter

Point Smear dE/dx MS Helix 

Result

ὨὉȾὨὼ
Corr

MS Corr Helix 

Seed

ὨὉȾὨὼ
Corr

MS Corr

1.5.1 ṉ„ πȢρὧάṉ ṉ ṉ

1.5.1b ṉ„ πȢρὧάṉ ṉ ṉ ṉ
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QQ-plot for Kalman Filter + E-loss correction 

Covariance Estimation (Test 1.5.1b)

QQ-plot for Helix Fit + E-loss correction 

Covariance Estimation (Test 1.5.1)

Å The M-Distance plots for 

these tests show a slight over-

estimation of the errors

Å This might be due to 

implementation of the E-loss 

correction in the Seeding 

(probably not in the KF 

propagation, see next test) or 

to the approximations made 

in the mirroring step of the 

propagation. Further 

investigation needed
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Å For this set of testsE-loss and Multiple Scattering are introduced in the Toy MC simulation

Å Compare 2 reconstruction results:

Å Helix Fit with E-Loss + MS corrections (Test 1.5)

Å Kalman Filter applied over simple Helix Fit with E-loss + MS corrections in both (Test 1.5a)

Toy-MC Helix Kalman Filter

Point Smear dE/dx MS Helix 

Result

ὨὉȾὨὼ
Corr

MS Corr Helix 

Seed

ὨὉȾὨὼ
Corr

MS Corr

2.5.1 ṉ„ πȢρὧάṉ ṉ ṉ ṉ ṉ ṉ

2.5.1c ṉ„ πȢρὧάṉ ṉ ṉ ṉ ṉ ṉ ṉ
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