
18th Oct, 2022

CVN Integration into LArSoft
Nitish Nayak, Tingjun Yang, Varuna Meddage

Introduction

• Parts of dune reconstruction code, specifically some of the ML stuff could be beneficial to other LAr experiments
(SBND, Argoneut, MicroBooNE etc)

• And vice-versa

• Generally an active area of development on the DUNE side, but over time has grown crusty and could use an
update

• The overall scheme is to have art modules to process simulated DUNE files (hits, clusters etc) — “pre-
processing”

• Some output format to be read by standalone python code — custom ML frameworks (not subject of this talk)

• More modules to read in trained results from Tensorflow, PyTorch and store them as new data products

CVN

3

• CVN — highly performant neutrino ID developed for horizontal drift by Saul A.M and Leigh W. [https://arxiv.org/abs/2006.15052]

• Uses images of hit clusters (“pixel maps”) as input directly to the Convolutional Neural Network — no downstream reco necessary

• Hits are gaussian-fits to deconvolved waveforms from the WireCell 2D signal processing chain (“gaushit”)

• Deep network architecture allows large performance gains not easily accessible through traditional methods

• Inputs are 2D Wire-Tick maps for each view and fed into a “Siamese Tower”-like architecture. Network merges information from the
different views in the downstream layers

https://arxiv.org/abs/2006.15052

CVN in DUNE

• Main class that handles the creation of pixel map objects to be written out for
training

• Essentially, takes in a cluster of hits -> sorts them into 2D wire-tick space for each
view

• Need a global wire, tick co-ordinate for events spanning multiple APAs, drift vols,
wrapped wires etc

• Handles different geometries within DUNE (HD, VD, ProtoDUNE-SP)

• Internally, some if-else conditions based on geometry service

Need a global ID
for strips

connected
across CRMs Strips are numbered

locally. Corresponding
Wires in different

CRMs get the same ID

GetDUNEVertDrift3ViewGlobalWire

CVN in DUNE

• Producer module (CVNMapper) uses PixelMapProducer to write out pixel map data products

• Analyzer module (CVNZlibMaker) uses these to write out pixel map objects as compressed binary files for each event

• Also writes out some auxiliary information needed for training (flavor, neutrino energy etc)

• Problem arises when :

• Want to write out pixel maps for not just recob::Hits but waveforms (recob::Wire) or even truth energy deposits (sim::SimChannel) directly.
PixelMapProducer doesn’t need to change a whole lot for this but not the way its currently set up

• A lot of this code can also be made geometry agnostic, especially useful if one wants to adapt it for other LAr experiments (SBND, Argoneut etc) .

CVNMapper

CVNZlibMaker

CVN in ArgoNeut
https://cdcvs.fnal.gov/redmine/projects/argoneutcode/repository/revisions/develop/entry/CVNArgoneut/art/PixelMapProducer.h

• For eg, when CVN was adapted for Argoneut, the entire DUNE code was copied over to argoneutcode

• Few things were changed in PixelMapProducer for argoneut specific geometry, but otherwise lot of overlap

• Now SBND too -> not sustainable

• There exists a common repository — larrecodnn

• Would be great if this could be ported over so that all experiments can write geometry specific code on top and use it

• In the process, could also overhaul a lot of the framework to handle multiple inputs more rationally (recob::Hit, recob::Wire, calibrated Hits
etc)

Doesn’t even belong here

https://github.com/LArSoft/larrecodnn/tree/develop/larrecodnn

New CVN Framework

• Working out of a branch on a fork : https://github.com/nitish-nayak/larrecodnn/tree/feature/bnayak_cvncommon

• Make PixelMapProducer a class template

• Can also write your own Helper class to access required information from the inputs (for example calibrated energy deposits vs raw energy
deposits for recob::Hits)

• Homogenize handling of other types of inputs (waveforms, truth energy deposits etc)

• Geometry specific handling of wire, tick co-ordinates can be done by deriving from a base type and then overriding ConvertLocaltoGlobal or
ConvertLocaltoGlobalTDC

https://github.com/nitish-nayak/larrecodnn/tree/feature/bnayak_cvncommon

• Since the meat of the pixel map producer module is the PixelMapProducer class, we can similarly make a class template for the
producer module

• Very simple task to make different variations of the producer modules for different inputs

• Write your own experiment specific PixelMapProducer class (just involves deriving from original and overriding a function or two)

• Writing new producer module with minimal code

• For eg, PixelMapDUNEHitProducer w/ DUNECVNHitMapper etc

New CVN Framework

New CVN Framework

• Similarly for writing out compressed binaries

• Improve how auxiliary information is also written out, so the user can just have a much cleaner interface for all this

• I think these are all mostly long overdue changes which prevent unnecessary complexity for many different variations people want
to try out

• Not meant to be a complete rethink on how to do the pre-processing in general

Current Status
•Varuna has been using my fork to use it on SBND

• It works, able to produce pixel maps and do the training

•Want to submit a PR and integrate it into larrecodnn

•This had been on hold for a while when Varuna was testing it on SBND - my mistake

•Unfortunately, in the meantime a lot of things have changed on the LArSoft side

•Tensorflow version (easily adapted)

•Cetmodules migration from v2 -> v3

Cetmodules migration

Chris Green’s talk

•My CMake config files were based on now deprecated methods

•Uses art_make, doesn’t use cet_make_library

•Doesn’t use explicit source lists for each plugin

•Overall, a lot of changes (some described here)

•These changes have already been integrated into the rest of larrecodnn for other ML algorithms, under ImagePatternAlgs (See :
commit by Chris Green)

•Currently don’t have the knowledge/expertise to adapt to the new regime

•Created larsoft issue here : https://cdcvs.fnal.gov/redmine/issues/27477

https://indico.fnal.gov/event/51726/contributions/227304/attachments/148880/191465/Cetmodules2_2021-11-02.pdf
https://indico.fnal.gov/event/53302/contributions/234978/attachments/152352/197229/Cetmodules_etc_2022-02-22.pdf
https://github.com/LArSoft/larrecodnn/commit/6b502ff39fd498969bc34456afc702a5326e0f72
https://cdcvs.fnal.gov/redmine/issues/27477

Summary
•Successfully ported over most of the DUNE CVN code to larrecodnn

•Experiment agnostic framework

•Common interface for multiple types of input for pixel map production as well as output format

•Tested on SBND and it works, able to train and generate results

•To submit a PR :

•Need to merge changes after migrating to new version of cetmodules

•Need new CMake config files

•Wanted to ask advice on how to go about this

•Maybe some support to implement the necessary changes as was done for other code in larrecodnn?

•Any documentation if it exists that I can use to do this myself?

Thank you for listening!

