Resummation in MCFM

CTEQ Fall Meeting, November 15, 2022

John Campbell (Fermilab)

(work with Keith Ellis, Tobias Neumann, Satyajit Seth)

MCFM

- MCFM contains about 350 processes at hadron-colliders evaluated at NLO.
- Since matrix elements are calculated using analytic formulae one can expect better performance, in terms of stability and computer speed, than fully numerical codes.
- In addition MCFM contains a number of process evaluated at NNLO using both the jettiness and the q_T slicing schemes.
 - NNLO results for pp \rightarrow X require process pp \rightarrow X + 1 parton at NLO, and two loop matrix elements for pp \rightarrow X, so mostly limited to color-singlet processes.
- Recent(ish) additions to virtual matrix elements:
 - H+4 partons with full mass effects at one-loop Budge, De Laurentis, Ellis, Seth, JC, 2107.04472
 - Vector boson pair production at one loop: simplified analytic results for the process $q\bar{q}\ell\ell\ell'\ell'g$ De Laurentis, Ellis, JC, 2203.17170

Ellis, Neumann, Williams, JC + more: mcfm.fnal.gov

MCFM 1-loop library

- Analytic 1-loop matrix elements from MCFM are also available in the form of a standalone library. Hoeche, Preuss, JC, 2107.04472
 - easily accessed in a similar way as, e.g. OpenLoops, through a C++ interface.
 - potential for significant speed gains vs. a numerical one-loop provider, either as component of higher-order calculation or parton shower.

- Attempt to document all the hadron collider processes calculated at NNLO (as of Feb. 2022).
- About 50% are available in MCFM.
- Note that in some cases N³LO is now the start of the art

VBF: Dreyer, Karlberg, 1811.07906 Higgs: Chen et al, 2102.07607 **DY: Chen et al, 2203.01565** VH, W: Baglio et al, 2209.06138

NNLO in MCFM

Process	MCFM	Process	MCF
H + 0 jet [9, 10, 16–20]	✓ [21]	$W^{\pm} + 0$ jet [22–24]	✓ [21
$Z/\gamma^* + 0$ jet [9, 23–25]	✓ [21]	ZH [26]	 ✓ [27
$W^{\pm}\gamma~[24,~28,~29]$	√ [30]	$Z\gamma~[24,~31]$	√ [31
$\gamma\gamma~[24,~32 extrm{}34]$	√ [35]	single top $[36]$	√ [37
$W^{\pm}H$ [38, 39]	✓ [27]	WZ [40, 41]	\checkmark
$ZZ[1,24,42\!-\!46]$	\checkmark	W^+W^- [24, 47–50]	\checkmark
$W^{\pm} + 1$ jet [51, 52]	[8]	Z + 1 jet [53, 54]	[11]
$\gamma + 1 ext{ jet } [55]$	[12]	H + 1 jet [56–61]	[13]
$b\bar{b} \rightarrow H + \text{jet}$	[14]		
$t\overline{t}$ [62–67]		Z + b [68]	
$W^{\pm}H$ +jet [69]		ZH+jet [70]	
Higgs WBF [71, 72]		$H \rightarrow b\bar{b} \ [73-75]$	
top decay $[37, 76, 77]$		dijets [78–80]	
$\gamma\gamma+ ext{jet}$ [81]		$W^{\pm}c$ [82]	
$b\overline{b}$ [83]		$\gamma\gamma\gamma$ [84, 85]	
HH [86]		HHH [87]	

Comparative study of jettiness and q_T slicing

Ellis, Seth, JC, 2202.07738

small value of q_T

$$\Sigma_T = \sigma_0 \exp\left[-\frac{\alpha_s C_F}{2\pi} \ln^2\left(\left(q_T^{\text{cut}}\right)^2 / Q^2\right)\right] = \sigma_0 \exp\left[-\frac{2\alpha_s C_F}{\pi} \ln^2\left(q_T^{\text{cut}} / Q\right)\right]$$

- Corresponding LL formula for zero-jettiness $\Sigma_{\tau} = \sigma_0 \exp\left|-\frac{\alpha_s C_F}{\pi} \ln^2 \frac{\tau^{\rm cut}}{Q}\right|$
- time required to reach a given error estimate, is obtained when

$$\frac{\tau^{\rm cut}}{Q} \simeq \left(\frac{q_T^{\rm cut}}{Q}\right)^{\sqrt{2}}$$

Leading log behavior of a color singlet cross section integrated up to a

• Hence a similar size of the above-cut integral, and thus the computing

Comparison of NNLO slicing methods

qr $\epsilon_T = q_T^{\text{cut}}/Q$ jettiness $\epsilon_\tau = (\tau^{\text{cut}}/Q)^{\frac{1}{\sqrt{2}}}$

- q_T slicing method appears to have smaller power corrections in most cases for equal computational burden.
- However jettiness has the proven ability to deal with final states containing a jet.

W+jet: Boughezal et al, 1504.02131 Z+jet: Boughezal et al, 1512.01291 H+jet: Boughezal et al, 1505.03893, JC et al, 1906.01020

 c.f. attempt to develop formalism for new slicing variables ("k_T-ness"), so far only to NLO. Buonocore et al, 2201.11519

q_T resummation

 Use the SCET-based "collinear anomaly" q_T resummation formalism: Becher, Neubert, +Hager, Wilhelm, 1109.6027, 1212.2621, 1904.08325

- All universal ingredients (beam functions, B_i , $B_j\,$ and collinear anomaly exponent F_{ij}) known up to 3 loops.
 - piggyback existing machinery of NNLO calculations in MCFM to reach N³LL+NNLO accuracy for important processes.
 - implemented as "CuTe-MCFM", results for DY, Higgs, VH, $\gamma\gamma$, $Z\gamma$. Becher, Neumann 2009.11437

Matching to fixed order

- Fixed order result recovered up to higher order terms, which can induce unphysical behavior at large q_T.
- Match by expanding resummed result and replacing with fixed-order one but computationally demanding at small q_T (introduce cutoff q₀).
- Implement a transition function to smoothly pass between resummed and fixed-order domains, choosing its parameters on a case-by-case basis.

Becher, Neumann 2009.11437

Vector boson pair production at small q_T

Ellis, Neumann, Seth, JC, 2210.10724

- Resummation effects are potentially more important for vector boson pair production at the same q_T since Q is larger.
- Transition between about 50 and 100 GeV, $(q_T/Q)^2 \sim [0.05, 0.2]$, leading to total uncertainty up to 15% in that region.
- Resummation at N³LL+NNLO becomes important below those scales, small uncertainties until ~ 5 GeV.

Transverse momentum distribution of the ZZ pair at NNLO and NNNLL+NNLO using <u>CMS cuts</u> at \sqrt{s} = 13.6 TeV

Comparison with CMS data at 13 TeV

10

- We simplify the CMS analysis, by applying the same cuts to both electrons and muons and neglect (tiny) identical particle effects.
- Resummation improves description below $q_T \sim 75$ GeV.
- More data will allow finer binning, so the resummation effects will be ever more necessary.

ATLAS data ZZ

- The ATLAS collaboration (2103.01918) performed measurements of the m_{4l} distribution in five slices of q_T^{4l}
- Expectation is that resummation should improve agreement with the data, as
 *m*_{4l} increases, as observed.

Truth WW cross section

 $d\sigma/dq_T~(fb/GeV)$

- WZ and WW q_T distributions show similar pattern but of course not directly measurable.
- Much more important for WW is the p_T^{veto} cross section to reduce background from $t\bar{t}$

Jet veto cross section

- Well-developed formalism, primarily focussed on (important) Higgs case;
 - jets defined using sequential recombination jet algorithms.
- Jet vetos generate large logarithms, as codified in factorization formula; however logarithms are smaller, typical value of $p_T^{\rm veto} \sim 25~{\rm GeV}$.
- Beam and soft functions for leading jet p_T recently calculated at two-loop order using an exponential regulator by Abreu et al.
- Jet veto cross sections are simpler than the q_T resummed calculation (no b-space, directly in p_T).

see, for example, Becher et al, 1307.0025, Stewart et al, 1307.1808

$$d_{ij} = \min(p_{Ti}^{n}, p_{Tj}^{n}) \frac{\sqrt{\Delta y_{ij}^{2} + \Delta \phi_{ij}^{2}}}{R}, \quad d_{iB} = p_{Ti}^{n}$$

$$\frac{d^{2}\sigma(p_{T}^{veto})}{dM^{2}dy} = \sigma_{0} \left| C_{V}(-M^{2}, \mu) \right|^{2}$$

$$\mathcal{B}_{c}(\xi_{1}, M, p_{T}^{veto}, R^{2}, \mu, \nu) \mathcal{B}_{c}(\xi_{2}, M, p_{T}^{veto}, R^{2}, \mu, \nu) \times \mathcal{S}(p_{T}^{veto}, R^{2}, \mu, \nu)$$
Beam functions
Abreu et al. 2207 07037

$$\sigma_0 = \frac{4\pi\alpha^2}{3N_c M^2 s} \qquad \xi_{1,2} = (M/\sqrt{s}) e^{\pm y}$$

Jet veto in a limited rapidity range

- Formula on last slide is valid for jet cross sections which are vetoed for all values of the jet rapidity.
- Experimental analyses actually perform jet rapidity cuts, i.e. $\eta < \eta_{\rm cut}$.
- Can identify three theoretical regions: Michel, Pietrulewicz, Tackmann, 1810.12911
 - $\eta_{\rm cut} \gg \ln(Q/p_T^{\rm veto})$ (standard jet veto resummation)
 - $\eta_{\rm cut} \sim \ln(Q/p_T^{\rm veto}) (\eta_{\rm cut}$ -dependent beam functions)
 - $\eta_{cut} \ll \ln(Q/p_T^{veto})$ (collinear non-global logs)

Current theory calculation

Typical **Experimental** cuts

Strategy: determine where resummation is potentially important, before considering limited rapidity range resummation

Refactorize à la Becher-Neubert

$$\begin{bmatrix} \mathscr{B}_{c}(\xi_{1}, Q, p_{T}^{veto}, R^{2}, \mu, \nu) \, \mathscr{B}_{\bar{c}}(\xi_{2}, Q, p_{T}^{veto}, R^{2}, \mu, \nu) \, \mathcal{S}(p_{T}^{veto}, R, \mu, \nu) \end{bmatrix}_{q^{2} = Q^{2}}$$

$$= \left(\frac{Q}{p_{T}^{veto}} \right)^{-2F_{qq}(p_{T}^{veto}, R, \mu)} e^{2h^{F}(p_{T}^{veto}, \mu)} \bar{B}_{q}(\xi_{1}, p_{T}^{veto}, R) \, \bar{B}_{\bar{q}}(\xi_{2}, p_{T}^{veto}, R)$$
"Collinear anomaly"

• Collinear anomaly expansion: $F_{qq}(p_T^{\text{veto}}, \mu)$

$$\begin{split} F_{qq}^{(0)} &= \Gamma_0^F L_{\perp} + d_1^{\text{veto}}(R, F) \\ F_{qq}^{(1)} &= \frac{1}{2} \Gamma_0^F \beta_0 L_{\perp}^2 + \Gamma_1^F L_{\perp} + d_2^{\text{veto}}(R, F) \\ F_{qq}^{(2)} &= \frac{1}{3} \Gamma_0^F \beta_0^2 L_{\perp}^3 + \frac{1}{2} (\Gamma_0^F \beta_1 + 2\Gamma_1^F \beta_0) L_{\perp}^2 + (\Gamma_2^F + 2\beta_0 d_2^{\text{veto}}(R, F)) \end{split}$$

- Full N³LL requires (R-dependent) coefficient d_3^{veto} , which is currently unknown.
 - Banfi et al, 1511.02886

$$= a_S F_{qq}^{(0)} + a_S^2 F_{qq}^{(1)} + a_S^3 F_{qq}^{(2)} + \dots , \quad a_S = \frac{\alpha_S}{4\pi}$$

 $L_1 + d_3^{\text{veto}}(R, F)$

• Extracted in small-R limit — good to O(25%) in d_2^{veto} (for typical R) \longrightarrow only claim N³LL_p.

Dependence on approximate d_{2}^{veto}

Ellis, Neumann, Seth, JC, to appear

- $d_3^{\text{veto}} \sim -8.4 \times 64 C_B \ln^2(R/R_0)$
- R_0 varied as an uncertainty: for R=0.4, varying between 0.5 and 2 scales d_3^{veto} in the range [0.06,3].

• Contributes as $\left(\frac{m_H}{p_T^{\text{veto}}}\right)^{-2\left(\frac{\alpha_s(\mu)}{4\pi}\right)^3} d_3^{\text{veto}}$

so in this approximation $d_3^{\text{veto}} < 0$ and it increases the cross section.

• Estimate $\leq 2.5\%$ uncertainty at p_T^{veto} = 25 GeV and R = 0.4.

Jet veto in Z production vs. CMS

- At $p_T^{\rm veto} \sim 25 30$ all calculations agree within errors.
- However error estimates differ between NNLO and $N^{3}LL_{p}$ +NNLO.
- For $p_T^{\text{veto}} = 30 \text{ GeV}$, $(\ln(Q/p_T^{\text{veto}} = 1.1) \ll (\eta_{\text{cut}} = 2.4)$
- As expected, at (probably irrelevant) small $p_T^{\rm veto}$ resummed calculations show significant deviations from fixed order.
- Jet veto resummation probably not so necessary here.

Jet veto in W^+W^- production

- Evidence that neither NNLO nor N³LL is sufficient, especially around $p_T^{\rm veto} = 20 - 40$ GeV
- R dependence is modest.
- $|\eta_{cut}| < 4.5$, so we can argue that $(\ln(Q/p_T^{veto}) = (1.3 - 2.2) \ll 4.5)$

Jet veto in W^+W^-

Ellis, Neumann, Seth, JC, 2210.10724

- Compare with CMS data taken from <u>2009.00119</u>.
- Errors improve going from
 N²LL+NNLO to N³LL_p+NNLO
- Theoretical errors smaller than experimental → interesting to see more data (only 36/fb).

production vs. CMS

q_T resummation at N⁴LL_p+N³LO Neumann, JC, 2207.07056

- Use recent calculations to push logarithmic accuracy to next order.
 - 3-loop beam functions 1912.05778, 2006.05329, 2012.03256, Luo et al. and Ebert et al.
 - 4-loop rapidity anomalous dimension Duhr et al., 2205.02242; Moult et al., 2205.02249
- "p": 5-loop cusp estimated (negligible) and missing unknown N³LO PDFs.
- Combine with MCFM Z+jet calculation at NNLO to also reach N³LO accuracy for Drell-Yan process.
- Performing pure fixed-order calculation tough at very low q_T but in practice only need to be convinced that matching corrections approach zero and are sufficiently small.

25 30 50 60 70 80 q_T^{\prime} [GeV] **Comparison with CMS**

- Excellent agreement with CMS data at the highest order, noticeable improvement at both low and high q_T .
- Integrate over spectrum for a cross- \bullet section comparison.

Order k	fixed-order α_s^k	res. improved α_s^k
0	694_{-92}^{+85}	
1	732^{+19}_{-30}	$637 \pm 8_{\rm mat.} \pm 70_{\rm sc.}$
2	720^{+4}_{-3}	$707 \pm 3_{\rm mat.} \pm 29_{\rm sc.}$
3	$700^{+4}_{-6} \pm 1_{\text{slicing}}$	$702 \pm 1_{\text{mat.}} \pm 1_{\text{m.c.}} \pm 17_{\text{sc.}}$

 $699 \pm 5 \text{ (syst.)} \pm 17 \text{ (lumi.)} (e, \mu \text{ combined}) [3]$

Total uncertainty larger by factor 2 than RadISH+NNLOJET Chen et al., 2203.01565

Impact of PDFs

 For illustration, resummed contribution only: for approximate N³LO of MSHT, NNLO of the same and (our default) NNPDF4.0 NNLO.

MSHT20aN³LO: McGowan et al., 2207.04739

Conclusion

- Calculations at NNLO show mainly smaller power corrections for q_T slicing than for zerojettiness slicing, with computing times roughly equal.
- The small q_T resummation in CuTe-MCFM, accurate to N³LL +NNLO, has been extended to all color singlet final states with pairs of massive vector bosons public release soon.
- We have compared our predictions with the available data but the fine-grained experimental study of vector boson pair processes where the resummation effects will be crucial is, in the main, still to come.
- Extension to $N^4LL_p + N^3LO$ for Z production CPU-intensive but complete (public soon).
- We have also resummed cross sections at N^3LL_p +NNLO for all color singlet final state processes with a p_T^{veto} at all rapidities. Necessary for Higgs production and for vector boson pair production.

Backup material

q_T vs. jettiness: photon processes

- \bullet
- Ebert, Tackmann 1911.08486; Becher, Neumann 2009.11437; Becher et al, 2208.01544

Much more similar for photon cases, jettiness perhaps slightly favored.

Photon isolation induces significant power corrections in both approaches

Uncertainty estimate

scale and the factorization/resummation scale by the multipliers

$$(k_F; k_R) \in \{(2,2), (0.5,0.5), (2,1), (1,1), (0.5,1), (1,2), (1,0.5)\}.$$

• For fixed order $\mu_F = k_F \hat{Q}$, $\mu_R = k_R \hat{Q}$.

- that for small qT, μ approaches q^{*} and it remains in the perturbative region.
- Additional important resummation uncertainties:

 - vary parameters in transition function.

• Estimate the perturbative truncation uncertainty by varying the renormalization/hard

• Hard scale is $k_R \hat{Q}$. To set the resummation scale, first calculate characteristic scale $q^* = Q^2 \exp(-\pi/C_i/\alpha_s(q^*))$ and then set $\mu = max\{k_F \times qT + q^* \exp(-q_T/q^*), 2 \text{ GeV}\}$ so

• reintroduce rapidity scale dependence (fixed-order remnant of analytic regulator) Jaiswal, Okui, 1506.07529

CMS results on lepton q_T in ZZ

- CMS also present results on the lepton q_T^l (summed over all leptons). Here the effect of resummation is minimal since
- However the q_T of the leading lepton $(q_T^{l,1})$ shows an effect.

27

Jet-veto in Higgs production

- successive orders lie within the band of the preceding order
- Resummation important in this case. \bullet

In the main the perturbative series is well-behaved at moderate R and