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MCFM
• MCFM contains about 350 processes at hadron-colliders evaluated at NLO. 


• Since matrix elements are calculated using analytic formulae one can expect better 
performance, in terms of stability and computer speed, than fully numerical codes. 


• In addition MCFM contains a number of process evaluated at NNLO using both the 
jettiness and the qT slicing schemes. 


• NNLO results for pp → X require process pp → X + 1 parton at NLO, and two 
loop matrix elements for pp → X, so mostly limited to color-singlet processes.


• Recent(ish) additions to virtual matrix elements:


• H+4 partons with full mass effects at one-loop 


• Vector boson pair production at one loop: simplified analytic results for the 
process qq̄ℓℓ̄ℓ′￼ℓ̄′￼g
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MCFM 1-loop library

• Analytic 1-loop matrix elements from 
MCFM are also available in the form of a 
standalone library. 

• easily accessed in a similar way as, e.g. 
OpenLoops, through a C++ interface.


• potential for significant speed gains vs. a 
numerical one-loop provider, either as 
component of higher-order calculation or 
parton shower.
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Fig. 1 CPU time ratio of OPENLOOPS, RECOLA, and MADLOOP5 to
MCFM at the level of loop matrix elements

– Intel® Xeon® E5-2650 v2 (2.60GHz, 20MB)
– Intel® Xeon® Gold 6150 (2.70GHz, 24.75MB)
– Intel® Xeon® Platinum 8260 (2.40GHz, 35.75MB)
– Intel® Xeon PhiTM 7210 (1.30GHz, 32MB)

For the timing tests at matrix-element level, we use stand-
alone interfaces to the respective tools and sample phase
space points flatly using the RAMBO algorithm [66]. We do
not include the time needed for phase-space point generation
in our results, and we evaluate a factor 10 more phase-space
points in MCFM in order to obtain more accurate timing mea-
surements at low final-state multiplicity. The main programs
and scripts we used for this set of tests are publicly available1.
The results are collected in Fig. 1, where we show all dis-
tinct partonic configurations that contribute to the processes
listed in Tables 1 and 2. We use the average across the dif-
ferent CPUs as the central value, while the error bars range
from the minimal to the maximal value. The interface to

MCFM typically evaluates matrix elements a factor 10–100
faster than the numerical one-loop providers, although for a
handful of (low multiplicity) cases this factor can be in the
1,000–10,000 range.

We perform a second set of tests, using the SHERPA

event generator [33,67], its existing OLP interfaces to
OPENLOOPS2 and RECOLA24,5 [68], and a dedicated interface
to MADLOOP56. With these interfaces we test the speedup in
the calculation of the Born-like contributions to a typical
NLO computation for the LHC at

√
s = 14 TeV, involv-

ing the loop matrix elements in Tables 1 and 2. The scale
choices and phase-space cuts used in these calculations are
listed in Appendix A. Figure 2 shows the respective timing
ratios. It is apparent that the large gains observed in Fig. 1
persist in this setup, because the Born-like contributions to
the NLO cross section consist of the Born, integrated sub-
traction terms, collinear mass factorization counterterms and
virtual corrections (BVI), and the timing is dominated by
the loop matrix elements if at least one parton is present in
the final state at Born level. The usage of MCFM speeds up
the calculation by a large factor compared to the automated
OLPs, with the exception of very simple processes, such as
pp → !!̄, pp → h, etc., where the overhead from pro-
cess management and integration in Sherpa dominates. To
assess this overhead we also compute the timing ratios after
subtracting the time that the Sherpa computation would take
without a loop matrix element. The corresponding results are
shown in a lighter shade and confirm that the Sherpa over-
head is significant at low multiplicity and becomes irrelevant
at higher multiplicity.

In the final set of tests we investigate a typical use case in
the context of parton-level event generation for LHC exper-
iments. We use the SHERPA event generator in a multi-jet
merging setup for pp → W+jets and pp → Z+jets [69] at√
s = 8 TeV, with a jet separation cut of Qcut = 20 GeV,

and a maximum number of five final state jets at the matrix-
element level. Up to two-jet final states are computed at NLO
accuracy. In this use case, the gains observed in Figs. 1 and 2
will be greatly diminished, because the timing is dominated
by the event generation efficiency for the highest multiplicity
tree-level matrix elements [70] and influenced by particle-
level event generation as well as the clustering algorithm
needed for multi-jet merging.7 We make use of the efficiency
improvements described in Ref. [73], in particular neglect-

4 At the time of this study, SHERPA provided an interface to RECOLA’s
Standard Model implementation only.
5 For V + 2 j processes, we use RECOLA1 due to compatibility issues
with RECOLA2.
6 We thank Valentin Hirschi for his help in constructing a dedicated
MADLOOP5 interface to SHERPA. This interface will be described in
detail elsewhere.
7 In this study we do not address the question of additional timing
overhead due to NLO electroweak corrections or PDF reweighting [71],
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NNLO in MCFM

• Attempt to document all the hadron 
collider processes calculated at 
NNLO (as of Feb. 2022). 


• About 50% are available in MCFM. 


• Note that in some cases N3LO is 
now the start of the art
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Process MCFM Process MCFM
H + 0 jet [9, 10, 16–20] ! [21] W± + 0 jet [22–24] ! [21]
Z/γ∗ + 0 jet [9, 23–25] ! [21] ZH [26] ! [27]
W±γ [24, 28, 29] ! [30] Zγ [24, 31] ! [31]
γγ [24, 32–34] ! [35] single top [36] ! [37]
W±H [38, 39] ! [27] WZ [40, 41] !
ZZ [1, 24, 42–46] ! W+W− [24, 47–50] !
W± + 1 jet [51, 52] [8] Z + 1 jet [53, 54] [11]
γ + 1 jet [55] [12] H + 1 jet [56–61] [13]
bb̄ → H+jet [14]
tt̄ [62–67] Z + b [68]
W±H+jet [69] ZH+jet [70]
Higgs WBF [71, 72] H → bb̄ [73–75]
top decay [37, 76, 77] dijets [78–80]
γγ+jet [81] W±c [82]
bb̄ [83] γγγ [84, 85]
HH [86] HHH [87]

Table 1. Publications on processes evaluated differentially at NNLO, (and in some cases beyond
NNLO). The tick mark indicates that the process is available in the public MCFM version. Processes
with a reference but no tickmark are not yet in the public MCFM code. Processes with a tickmark
but no reference have been introduced into the public code at this time.

We are preparing a release of MCFM [3–6] which will allow calculation of the NNLO
QCD results for a large number of colour singlet production processes with both zero-
jettiness [7–9] and qT -slicing [10].1 The code has also been used for processes with non-colour
singlet final states, such asW + jet [8], Z +jet [11], γ +jet [12], and Higgs boson + jet [13, 14],
although these have not yet been made available in the public version. These latter processes
are treatable because of the SCET factorization theorems for the cross sections for small
1-jettiness.

Given the importance of precision for the LHC, there has been an intense community
effort to produce results at NNLO QCD and in some cases N3LO. A review of the 2020
status of precision QCD with a special focus on the Higgs boson is given in ref. [15]. In
table 1 we present references for the processes that have been calculated in NNLO QCD. It
is important to note that when targeting the precision achievable at NNLO, electroweak
corrections can also become important, especially at large pT . A discussion of these effects
is beyond the scope of this paper.

In ref. [21] MCFM results for pp → H, pp → Z, pp → W , pp → ZH, pp → WH

and pp → γγ have been presented. Results for colour singlet production processes, espe-
cially vector boson pairs have also been presented by the MATRIX collaboration [24, 88].
Therefore, although results for the colour singlet cross sections presented in this paper are
known, in view of the complicated nature of these calculations it is re-assuring to have

1We aim to release this version in March 2022.
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Comparative study of jettiness and qT slicing 

• Leading log behavior of a color singlet cross section integrated up to a 
small value of  
 

• Corresponding LL formula for zero-jettiness 
 

• Hence a similar size of the above-cut integral, and thus the computing 
time required to reach a given error estimate, is obtained when

qT
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Parton channel Process κ(OpenLoops 2) κ(Recola2) tMCFM[s/1000 pts]
dū → e−ν̄eγg W−γ + jet 31.2 23.7 0.14
ud̄ → e+νeγg W+γ + jet 29.1 24.3 0.14
ud̄ → e+e−γg Zγ + jet 24.1 15.5 0.78
uū → e−ν̄eµ+νµg W+W− + jet 17.9 12.0 0.4
dū → e−ν̄eµ+µ−g W−Z + jet 7.2 5.2 0.83
ud̄ → e+νeµ+µ−g W+Z + jet 7.1 5.2 0.83
uū → e−e+µ+µ−g ZZ + jet 15.8 3.8 3.6

Table 2. The relative timing of the OpenLoops 2 and Recola2 libraries, to the analytic 1-loop
calculations in MCFM, for the calculation of a single partonic channel for each diboson process.
The speed-up factor when using MCFM rather than a library X is denoted by κ(X), where
κ(X) = tX/tMCFM and the timings t are established by computing results for 1000 phase-space
points on an Intel Xeon E5-2650 2.60GHz CPU.

up to a small cutoff value, qcutT , is

ΣT = σ0 exp
[
−αsCF

2π
ln2
((

qcutT

)2
/Q2

)]
= σ0 exp

[
−2αsCF

π
ln2
(
qcutT /Q

)]
, (3.1)

where σ0 is the Born level cross section. The corresponding leading log formula for zero-
jettiness integrated up to a cut of value τ cut is,

Στ = σ0 exp
[

−αsCF

π
ln2 τ cut

Q

]

. (3.2)

A simple derivation of these two formulas at order αs is given in appendix A.
The resources needed for a computation of a given accuracy is dominated by the

calculation of the above-cut contribution. Comparing eqs. (3.1) and (3.2) one therefore
expects a similar size for the contribution coming from the above cut region when the values
of τ cut and qcutT are related by [141],

τ cut

Q
#
(
qcutT

Q

)√2
. (3.3)

We therefore define the following two dimensionless quantities to encapsulate the slicing
dependence of the results,

εT = qcutT /Q , (3.4)

and
ετ = (τ cut/Q)

1√
2 . (3.5)

The computational burden is then expected to be very similar for equal values of εT and ετ

and therefore we will compare the two schemes at the same values of εT and ετ . Although
this argument is only made at the level of leading logarithms, we will see later (cf. table 5
in section 3.4) that it is indeed supported even at NNLO for the operating values of ετ and
εT that we choose. We note that all the results presented in this paper are obtained using a
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uū → e−e+µ+µ−g ZZ + jet 15.8 3.8 3.6

Table 2. The relative timing of the OpenLoops 2 and Recola2 libraries, to the analytic 1-loop
calculations in MCFM, for the calculation of a single partonic channel for each diboson process.
The speed-up factor when using MCFM rather than a library X is denoted by κ(X), where
κ(X) = tX/tMCFM and the timings t are established by computing results for 1000 phase-space
points on an Intel Xeon E5-2650 2.60GHz CPU.

up to a small cutoff value, qcutT , is

ΣT = σ0 exp
[
−αsCF

2π
ln2
((

qcutT

)2
/Q2

)]
= σ0 exp

[
−2αsCF

π
ln2
(
qcutT /Q

)]
, (3.1)

where σ0 is the Born level cross section. The corresponding leading log formula for zero-
jettiness integrated up to a cut of value τ cut is,

Στ = σ0 exp
[

−αsCF

π
ln2 τ cut

Q

]

. (3.2)

A simple derivation of these two formulas at order αs is given in appendix A.
The resources needed for a computation of a given accuracy is dominated by the

calculation of the above-cut contribution. Comparing eqs. (3.1) and (3.2) one therefore
expects a similar size for the contribution coming from the above cut region when the values
of τ cut and qcutT are related by [141],

τ cut

Q
#
(
qcutT

Q

)√2
. (3.3)

We therefore define the following two dimensionless quantities to encapsulate the slicing
dependence of the results,

εT = qcutT /Q , (3.4)

and
ετ = (τ cut/Q)

1√
2 . (3.5)

The computational burden is then expected to be very similar for equal values of εT and ετ

and therefore we will compare the two schemes at the same values of εT and ετ . Although
this argument is only made at the level of leading logarithms, we will see later (cf. table 5
in section 3.4) that it is indeed supported even at NNLO for the operating values of ετ and
εT that we choose. We note that all the results presented in this paper are obtained using a

– 7 –

J
H
E
P
0
6
(
2
0
2
2
)
0
0
2

Parton channel Process κ(OpenLoops 2) κ(Recola2) tMCFM[s/1000 pts]
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Comparison of NNLO slicing methods 

• qT slicing method appears to have 
smaller power corrections in most 
cases for equal computational burden.


• However jettiness has the proven 
ability to deal with final states 
containing a jet. 
 
 
 


• c.f.  attempt to develop formalism for 
new slicing variables (“kT-ness”), so 
far only to NLO.
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Figure 5. Dependence of NNLO coefficient for inclusive H, Z, W− and W+ processes on choice
of slicing cut, for both 0-jettiness and qT -slicing. The MATRIX result for qcutT = 0.15%, ref. [24]
corresponds to the square black point (slightly offset for visibility) and the uncertainty band of the
extrapolated MATRIX result is shown as the dashed lines.
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qT resummation
• Use the SCET-based “collinear anomaly” qT resummation formalism: 

 
 
 
 

• All universal ingredients (beam functions,  ,   and collinear anomaly 
exponent  ) known up to 3 loops.


• piggyback existing machinery of NNLO calculations in MCFM to reach 
N3LL+NNLO accuracy for important processes.


• implemented as “CuTe-MCFM”, results for DY, Higgs, VH, , .

Bi Bj
Fij

γγ Zγ

7

Process ATLAS CMS
WZ [20] [21–23]
ZZ [24, 25] [26]
WW [27, 28] [22, 29]
WH/ZH [30, 31] [32]

Table 1: Experimental publications for boson pair production at 13TeV.

the massive diboson processes W
+
W

�, W±
Z, and WH, ZH at the level of N3LL+NNLO,

compare with data as far as currently available, and provide predictions for the current LHC
energy of

p
s = 13.6TeV.

In addition to qT resummation, resummation effects become important when we veto against
jet activity, for example in W

+
W

� production to reduce background from tt̄ production.
Although a discussion of jet-veto results is not the principal aim of our study, in view of
its experimental importance we present the results of jet-veto resummation for the case of
W

+
W

� production. We leave a detailed analysis of jet-veto resummation of this and other
processes for a future study.

In this paper we use the SCET-based “collinear anomaly” qT resummation formalism intro-
duced in refs. [15–17]. Formulations of qT resummation that are fully performed in impact
parameter space have the drawback that the transformation from the impact parameter
space xT back to qT involves the running coupling at scale xT . Therefore, when performing
the Fourier transform over all values of the impact parameter, one is forced to introduce
a prescription to avoid the Landau pole in the running coupling. In the formulation of
refs. [15–17] this issue is avoided, setting the scale directly in qT space. The cross-section
is obtained by combining the contributions from the partonic channels i, j 2 q, q̄, g. Up to
terms suppressed by powers of qT /Q, these channels exhibit a factorized form that is fully
differential in the momenta {q} of the colorless final state

d�ij(p1, p2, {q}) =

Z 1

0
dz1

Z 1

0
dz2 d�

0
ij(z1p1, z2p2, {q})Hij(z1p1, z2p2, {q}, µ)

⇥
1

4⇡

Z
d2x? e

�iq?x?

✓
x
2
T
Q

2

b
2
0

◆�Fij(x?,µ)

⇥Bi(z1, x?, µ) ·Bj(z2, x?, µ) , (1.1)

where p1 and p2 are the incoming hadron momenta. The function d�0
ij

denotes the differential
cross-section for the hard Born-level process and the hard-function Hij contains the associated
virtual corrections. The beam functions Bi and Bj include the effects of soft and collinear
emissions at large transverse separation x? and the indices i and j and the momentum
fractions z1 and z2 refer to the partons which enter the hard process after these emissions.
The collinear anomaly leads to the Q

2-dependent factor within the Fourier-integral over
the transverse position x?. The perturbatively calculable anomaly exponent Fij is also
referred to as the rapidity anomalous dimension in the framework of ref. [33]. We further
have b0 = 2e��E , where �E is the Euler constant, and x

2
T
= �x

2
?.

– 3 –

Becher, Neubert, +Hager, Wilhelm, 1109.6027, 1212.2621, 1904.08325

Becher, Neumann 2009.11437



Matching to fixed order 
• Fixed order result recovered up to 

higher order terms, which can induce 
unphysical behavior at large qT. 


• Match by expanding resummed result 
and replacing with fixed-order one — 
but computationally demanding at 
small qT (introduce cutoff q0).


• Implement a transition function to 
smoothly pass between resummed 
and fixed-order domains, choosing its 
parameters on a case-by-case basis. 
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2 RESUMMATION FRAMEWORK AND IMPLEMENTATION
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Figure 1: The transition function defined in (9) for different values of the parameter xmax

which determines the position of the transition. The x-axis is displayed on a
square-root scale to guide the eye on the quadratic qT -dependence.

The function s(x), parametrized by l, r, u, is defined to be s(l) = 1�u and s(r) = u. In terms
of this sigmoid, our transition function t(x;xmin, xmax, u), where x = q2

T
/Q2, is then defined

by

t(x;xmin, xmax, u) =

(
1, for x < xmin

s(x;xmin
,x

max
,u)

s(xmin;xmin,xmax,u)
, otherwise

)
. (9)

This ensures that below xmin = (qmin

T
/Q)2 only the naively matched result is used, and at

xmax for small u ⌧ 1 the transition function is approximately u. In practice it makes sense
to set the transition function to zero below a small threshold like 10�3 without a noticeable
discontinuity. This has the advantage that the deteriorating resummation and matching
corrections do not impact the region of large qT at all. Our default choices in the remainder
of this paper are xmin = 0.001, and u = 0.001.

For the fiducial results studied here, we find that without the presence of a threshold or
presence of photons, power-suppressed corrections are of order q2

T
/Q2, and the size of the

matching corrections is well-behaved up to relatively large values of q2
T
/Q2. Concretely, we

find that values of xmax = 0.4 and xmax = 0.6 can be used and allow us to estimate the
effect of the matching. For the processes with photons and with experimental cuts inducing
additional thresholds, we have to start the transition much sooner. This is discussed in detail
in the sections for the �� and Z� predictions. We plot all transition functions used in our
study in fig. 1.

Power corrections and recoil effects The factorization theorem in eq. (1) is derived strictly
in the limit qT ! 0 with power corrections that scale like q2

T
/Q2 for fully inclusive production

of a large-Q2 system. Through the matching to fixed-order predictions, subleading power
corrections are automatically included to all powers in qT /Q, but of course not resummed.
Since the factorization theorem is a function of q2

T
, it is most natural to consider the cross

section d�/dq2
T
. In fixed-order perturbation theory, the inclusive cross section for qT > 0
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2 RESUMMATION FRAMEWORK AND IMPLEMENTATION

Matching to fixed order A simple additive matching prescription

d�N
3
LL

dqT

�����
naively matched to NNLO

=
d�N

3
LL

dqT
+

d�NNLO

dqT
� d�N

3
LL

dqT

�����
exp. to NNLO| {z }

matching correction ��

(7)

combines the resummed result at small qT with the fixed-order predictions at larger qT ,
but suffers from two problems. First of all, the fixed-order result is only recovered up to
higher-order terms. While formally not a problem, the leftover higher-order terms can induce
unphysical behavior. We should therefore switch off the resummation at large qT , which we
implement using a transition function t(x) with x = q2

T
/Q2. This function is constructed so

that t(x) = 1 +O(x) near x = 0 and t(x � 1) = 0. The intermediate behavior is such that it
smoothly switches the resummation off as x ! 1. A similar problem arises for small qT . The
matching corrections are power suppressed, but can become numerically unstable and suffer
from large unresummed logarithms. For this reason, we switch the matching off at very small
qT , below a cutoff scale q0 . 1GeV. The following modified matching prescription

d�N
3
LL

dqT

�����
matched to NNLO

= t(x)

 
d�N

3
LL

dqT
+ ��|

qT>q0

!
+ (1� t(x))

d�NNLO

dqT
(8)

addresses both issues discussed above. Since we match on the level of the differential cross
section, the fully inclusive fixed-order result is only restored within the nominal perturbative
accuracy, and not exactly. For inclusive Z production it was found that the difference between
resumming and matching the spectrum or the cumulant, which would preserve the integrated
fixed-order result, are numerically small [24]. A detailed comparison of the two approaches
can be found in ref. [76].

Choosing an appropriate transition region has to be done in dependence of the process and
the kinematical cuts. This is necessary in order not to include resummation in a region where
it is no longer valid. While it could be considered a drawback to have to manually choose the
transition region, respectively transition function, we believe that it offers clear advantages:
The transition is performed transparently and we can guarantee which parts of the fully
matched resummation are included in which kinematical region. Contributions where the qT
resummation clearly becomes invalid, for example due to kinematical thresholds, can be fully
excluded.

Below, we discuss the matching procedure in detail for the diboson processes �� and Z�
where kinematical thresholds require switching off the resummation relatively early. To choose
the transition region, we first evaluate the size of the matching corrections relative to the
(naively) matched result for each process and set of cuts. These relative corrections should be
small in the resummation region, at worst of order one. Comparing results, we then try to
identify a matching window in which the resummed and fixed-order results agree well enough
that the transition between them can be performed reliably.

Within our setup one can easily implement any desired transition function or even implement
other matching procedures. All our results in this study are obtained with a suitably
parametrized sigmoid function. Following a choice in CuTe, we first define

s(x; l, r, u) =

✓
1 + exp

✓
log

✓
1� u

u

◆
x�m

w

◆◆�1

, m = (r + l)/2 , w = (r � l)/2 .
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• Resummation effects are potentially more 
important for vector boson pair production 
at the same  since  is larger.


• Transition between about 50 and 100 GeV, 
, leading to total 

uncertainty up to 15% in that region.


• Resummation at N3LL+NNLO becomes 
important below those scales, small 
uncertainties until ~ 5 GeV.

qT Q

(qT /Q)2 ∼ [0.05, 0.2]

9
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Vector boson pair production at small qT
Ellis, Neumann, Seth, JC, 2210.10724

https://arxiv.org/abs/2009.01186


Comparison with CMS data at 13 TeV

• We simplify the CMS analysis, by 
applying the same cuts to both 
electrons and muons and neglect 
(tiny) identical particle effects.


• Resummation improves 
description below  GeV.


• More data will allow finer binning, 
so the resummation effects will be 
ever more necessary. 

qT ∼ 75
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ATLAS data ZZ

• The ATLAS collaboration 
(2103.01918) performed 
measurements of the  
distribution in five slices of 


• Expectation is that 
resummation should improve 
agreement with the data, as 

 increases, as observed.

m4l
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m4l
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Truth WW cross section

• WZ and WW qT 
distributions show similar 
pattern but of course not 
directly measurable.


• Much more important for 
WW is the  cross 
section to reduce 
background from 

pveto
T

tt̄

12



Jet veto cross section
• Well-developed formalism, primarily 

focussed on (important) Higgs case;


• jets defined using sequential 
recombination jet algorithms.


• Jet vetos generate large logarithms, as 
codified in factorization formula; 
however logarithms are smaller, typical 
value of .


• Beam and soft functions for leading jet  
recently calculated at two-loop order using 
an exponential regulator by Abreu et al.


• Jet veto cross sections are simpler than 
the  resummed calculation 
(no b-space, directly in pT).

pveto
T ∼ 25 GeV

pT

qT

dij = min(pn
Ti, pn

Tj)
Δy2

ij + Δϕ2
ij

R
, diB = pn

Ti

d2σ(pveto
T )

dM2dy
= σ0 CV(−M2, μ)

2

[ℬc(ξ1, M, pveto
T , R2, μ, ν) ℬc̄(ξ2, M, pveto

T , R2, μ, ν) × 𝒮(pveto
T , R2, μ, ν)]

ξ1,2 = (M/ s) e±y σ0 =
4πα2

3NcM2s

Beam functions 
Abreu et al, 2207.07037

         Soft function 
Abreu et al, 2204.03987

Rapidity 
regulator ν

see, for example, Becher et al, 1307.0025 ,  Stewart et al, 1307.1808
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https://arxiv.org/abs/2207.07037
https://arxiv.org/abs/2204.02987


Jet veto in a limited rapidity range
• Formula on last slide is valid for jet cross 

sections which are vetoed for all values of the 
jet rapidity.


• Experimental analyses actually perform jet 
rapidity cuts, i.e.   .


• Can identify three theoretical regions: 

•  (standard jet veto 
resummation)


•  ( -dependent beam 
functions)


•  (collinear non-global logs)

η < ηcut

ηcut ≫ ln(Q/pveto
T )

ηcut ∼ ln(Q/pveto
T ) ηcut

ηcut ≪ ln(Q/pveto
T )
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Strategy: determine where 
resummation is potentially 
important, before considering 
limited rapidity range resummation

Michel, Pietrulewicz, Tackmann, 1810.12911



Refactorize à la Becher-Neubert

• Collinear anomaly expansion: 
 
 
 
 
 

• Full N3LL requires (R-dependent) coefficient , which is currently unknown.


• Extracted in small-R limit — good to O(25%) in  (for typical R)   only claim N3LLp.

dveto
3

dveto
2 ⟶

15

[ℬc(ξ1, Q, pveto
T , R2, μ, ν) ℬc̄(ξ2, Q, pveto

T , R2, μ, ν )𝒮(pveto
T , R, μ, ν)]q2=Q2

= ( Q
pveto

T )
−2Fqq(pveto

T ,R,μ)

e2hF(pveto
T ,μ) B̄q(ξ1, pveto

T , R) B̄q̄(ξ2, pveto
T , R)

“Collinear 
anomaly”

F(0)
qq = ΓF

0 L⊥ + dveto
1 (R, F)

F(1)
qq =

1
2

ΓF
0 β0L2

⊥ + ΓF
1 L⊥ + dveto

2 (R, F)
L⊥ = 2 ln

μ
pveto

T

  Fqq(pveto
T , μ) = aSF(0)

qq + a2
SF(1)

qq + a3
SF(2)

qq + … , aS =
αS

4π

F(2)
qq =

1
3

ΓF
0 β2

0 L3
⊥ +

1
2

(ΓF
0 β1 + 2ΓF

1 β0)L2
⊥ + (ΓF

2 + 2β0dveto
2 (R, F))L⊥ + dveto

3 (R, F)

Banfi et al, 1511.02886



Dependence on approximate dveto
3

• 


•  varied as an uncertainty: for R=0.4, 
varying between 0.5 and 2 scales 

 in the range [0.06,3].


• Contributes as  

so in this approximation  and 
it increases the cross section.


• Estimate  uncertainty 
at = 25 GeV and .

dveto
3 ∼ − 8.4 × 64CB ln2(R/R0)

R0

dveto
3

( mH

pveto
T

)
−2( αs(μ)

4π )
3
dveto

3

dveto
3 < 0

≤ 2.5 %
pveto

T R = 0.4

16

R0 = 1/2 R0 = 1 R0 = 2

Ellis, Neumann, Seth, JC, to appear



Jet veto in Z production vs. CMS
• At  all calculations agree 

within errors.


• However error estimates differ between 
NNLO and N LLp +NNLO.


• For , 



• As expected, at (probably irrelevant) small 
 resummed calculations show 

significant deviations from fixed order.


• Jet veto resummation probably not so 
necessary here.

pveto
T ∼ 25 − 30

3

pveto
T = 30 GeV

(ln(Q/pveto
T = 1.1) ≪ (ηcut = 2.4)

pveto
T

17



Jet veto in  productionW+W−

• Evidence that 
neither NNLO nor 
N LL is sufficient, 
especially around 

GeV


• R dependence is 
modest.


• , so 
we can argue that 

3

pveto
T = 20 − 40

|ηcut | < 4.5

(ln(Q/pveto
T ) = (1.3 − 2.2) ≪ 4.5
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Jet veto in  production vs. CMSW+W−

• Compare with CMS data taken 
from 2009.00119.


• Errors improve going from 
N LL+NNLO to  N LLp+NNLO


• Theoretical errors smaller than 
experimental  interesting to 
see more data (only 36/fb).

2 3

⟶
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qT resummation at N4LLp+N3LO
• Use recent calculations to push logarithmic accuracy to next order.


• 3-loop beam functions 


• 4-loop rapidity anomalous dimension


• “p”: 5-loop cusp estimated (negligible) and missing unknown N3LO PDFs.


• Combine with MCFM Z+jet calculation at NNLO to also reach N3LO accuracy 
for Drell-Yan process.


• Performing pure fixed-order calculation 
tough at very low qT but in practice only 
need to be convinced that matching 
corrections approach zero and are 
sufficiently small.
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Supplementary material for: Fiducial Drell-Yan production at the LHC
improved by transverse-momentum resummation at N4LL+N3LO

Tobias Neumann
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

John Campbell
Fermilab, PO Box 500, Batavia, Illinois 60510, USA

DETAILED VALIDATION AND CHECKS

Size of matching corrections

In fig. 1 we show the matching corrections of the ↵s,↵2
s

and ↵3
s coefficients relative to the naively matched result

at N4LLp for the CMS analysis in the main document.
The naively matched result consists of matching correc-
tions and resummed result without transition function.
The size of the matching corrections on the one hand
indicates where the transition function needs to switch
between resummed and fixed-order calculations. In this
case matching corrections become sizable around 50GeV
and the resummation quickly breaks down beyond 60GeV.
This motivates our choice to use a transition function as
detailed in ref. [1] using xmax

T = (qmax
T /MZ)2 with qmax

T
in the range 40 to 60GeV. The transition uncertainties
are then comparable to uncertainties in the fixed-order
and resummation region and we are therefore minimally
sensitive to the precise range and shape of the transi-
tion.

Figure 1 further justifies our neglect of matching correc-
tions below 5GeV. The approach to zero of the match-
ing corrections towards smaller qT shows that the large
logarithms present in the fixed-order and expanded re-
summation calculations cancel. While the ↵3

s matching
corrections at 5GeV are zero within numerical uncer-
tainty, from the lower order results we see flucations at
the level of one percent for smaller values of qT . On the
fiducial cross-section we therefore estimate an uncertainty
due to missing matching corrections by multiplying the
resummed result integrated up to 5GeV with one per-
cent. This is about 1 pb, our quoted numerical precision.
Similarly the effect on the Z-boson qT distributions be-
low 5GeV is expected to be less than 1%. This is also
the region with substantial resummation uncertainties
from a variation of the low scale. The effect is therefore
negligible.

The ↵3
s coefficient of fig. 1 has been obtained using a

dynamic ⌧ cut
1 value of 7.6 · 10�5 ·

q
(qZT )

2 +m2
Z , which is

about 0.007GeV for small qT . Our one-jettiness is defined
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FIG. 1: Matching corrections of the ↵s,↵2
s and ↵3

s

coefficients relative to the naively matched result at
N4LLp (matching corrections + resummed result without

transition function) for the CMS cuts as in the main
document.

TABLE I: Fiducial cuts for Z ! l+l� used in the ATLAS
13TeV analysis [2].

Lepton cuts qlT > 27GeV, |⌘l| < 2.5

Mass cuts 66.0GeV < ml+l� < 116.0GeV

by

⌧1 =
X

partons k

min
i

⇢
2riqk
Qi

�
, (1)

where the sum over i is over the two beam momenta and
the jet axis determined by anti-kT R = 0.5 clustering
and Qi are chosen to be 2Ei. We have checked the ⌧ cut

1

dependence to determine that with the given ⌧ cut
1 cutoff

we can only reliably use a qT resummation matching
cutoff of 5GeV, as shown in fig. 1. Smaller matching
cutoffs would require smaller ⌧ cut

1 values for the large qT
logarithms to cancel between fixed-order NNLO Z+jet
calculation and fixed-order expansion of the resummation,
increasing computational costs significantly.

Comparison with arXiv:2203.01565

As an additional cross-check of the fixed-order compo-
nent of our calculation, and validation of results in the

Neumann, JC, 2207.07056

1912.05778, 2006.05329, 2012.03256, Luo et al. and Ebert et al.

Duhr et al., 2205.02242; Moult et al., 2205.02249



Comparison with CMS
• Excellent agreement with CMS data 

at the highest order, noticeable 
improvement at both low and high qT.


• Integrate over spectrum for a cross-
section comparison. 
 
 
 
 

• Total uncertainty larger by factor 2 
than  RadISH+NNLOJET
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3

cutoff. We verified this through checking the correct
asymptotic cancellation of large qT logarithms for qT ! 0
differentially in qT and integrated with a slicing cutoff,
see our supplementary material.

The qT matching cutoff must be small enough that resid-
ual matching corrections can be neglected. The impact of
this on fiducial results can be estimated by multiplying
the resummed cross-section integrated up to the matching
cutoff with the relative size of the neglected matching
corrections. At ↵s and ↵2

s matching corrections can be
safely neglected below 1GeV. For the ↵3

s coefficient we
find that they can be neglected below 5GeV with residual
per-mille level effects at the order of the numerical inte-
gration uncertainty. This larger value is possible due to
the inclusion of linear power corrections in our resumma-
tion formalism. This results in an error that is below the
quoted numerical precision of our fiducial results (one pb).
Similarly, the effect on all shown differential distributions
is at the per-mille level.

RESULTS

We present results at
p
s = 13TeV using the NNPDF4.0

PDF set at NNLO with ↵s(mZ) = 0.118 [65]. Electroweak
input parameters are chosen in the Gµ scheme with mZ =
91.1876GeV, mW = 80.385GeV, �Z = 2.4952GeV and
GF = 1.166 39 ⇥ 10�5 GeV�2. We denote the matched
resummation accuracy with ↵s for N2LL+NLO, ↵2

s for
N3LL+NNLO and ↵3

s for N4LLp+N3LO.

Our fiducial selection cuts in table I are chosen to compare
with the most recent Z-boson precision measurement by
CMS in ref. [3]. The symmetric lepton cuts used in this
analysis cause a poor perturbative convergence for fixed-
order calculations and can also lead to numerical issues.
However, the use of resummation resolves such issues
[34–36].

In our calculation we distinguish between three scales for
estimating uncertainties. We use a low (resummation)
scale ⇠ qT (see ref. [43] for details) to which RGEs are
evolved down from the hard scale chosen as

q
m2

Z + p2T,Z .
The CuTe-MCFM resummation formalism [45–47] is orig-
inally derived using an analytic regulator to regulate
rapidity divergences in the transverse position dependent
PDFs (collinear anomaly formalism). This is opposed to
using a rapidity regulator that introduces a rapidity scale
[66]. We have re-introduced a scale estimating the effect
of a different rapidity scale as suggested in ref. [67]. We
vary hard and low scale by a factor of two, and rapidity
scale by a factor of six, tuned on the truncation of the
improved power counting, to obtain a robust estimate of
truncation uncertainties. Most importantly our formalism
allows for the variation of the low scale, which dominates
uncertainties at small qT . Last, in our uncertainty bands

TABLE I: Fiducial cuts for Z ! l+l� used in the CMS
13TeV analysis [3].

Lepton cuts qlT > 25GeV, |⌘l| < 2.4

Separation cuts 76.2GeV < ml+l� < 106.2GeV,

|yl+l� | < 2.4
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FIG. 1: Differential transverse-momentum resummation
improved predictions for the ql

�l+

T distribution at order
↵s, ↵2

s and ↵3
s.

we include the effect of varying the transition function
in the region of about 40GeV to 60GeV where match-
ing corrections become significant, following the same
procedure as in ref. [43] at a lower order.

While for Drell-Yan production our resummation formal-
ism does not set the central low scale below ⇠ 2GeV [43],
a downwards variation would probe close towards the
non-perturbative regime. We therefore set a minimum of
2GeV and symmetrize the uncertainty bands since the
variation becomes ineffective at small scales. Note that
about 2% of the total fiducial cross-section comes from
the region qT < 1GeV where one might expect additional
non-perturbative effects of an unknown size.
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FIG. 2: Differential transverse-momentum resummation
improved predictions for the �⇤ distribution at order ↵s,

↵2
s and ↵3

s.

Differential results.

In figure 1 we present the Z boson transverse momentum
distribution at different orders and compare it to the CMS
13TeV measurement [3] with cuts as in table I.

Overall there is an excellent agreement between theory
and data at the highest order. Going from ↵2

s to ↵3
s de-

creases uncertainties and improves agreement with data
noticeably at both large and small qT . In the first bin
0GeV < qT < 1GeV we notice a relatively large differ-
ence to the data, but this is also where one would expect
a non-negligible contribution from non-perturbative ef-
fects. For the �⇤ distribution shown in figure 2 results
are overall very similar.

Since our resummation implementation is fully differential
in the electroweak final state we can naturally also present
the transverse momentum distribution of the final state
lepton, see figure 3. This is plagued by a Jacobian peak
at fixed-order and crucially requires resummation. The
higher-order ↵3

s corrections further stabilize the results
with smaller uncertainties.
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FIG. 3: Differential transverse-momentum resummation
improved predictions for the lepton transverse

momentum distribution at order ↵s, ↵2
s and ↵3

s.

TABLE II: Fiducial cross-sections in pb for the cuts in
table I and input parameters as in the text. Uncertainties
for the resummation-improved results include matching
to fixed-order (mat.), neglected matching corrections

(m.c.), and by scale variation (sc.). The fixed-order result
at N3LO has an additional slicing-cutoff uncertainty. For
comparison, the final row shows the CMS measurement

(for electron and muon channels combined) [3].

Order k fixed-order ↵k
s res. improved ↵k

s

0 694+85
�92 —

1 732+19
�30 637± 8mat. ± 70sc.

2 720+4
�3 707± 3mat. ± 29sc.

3 700+4
�6 ± 1slicing 702± 1mat. ± 1m.c. ± 17sc.

699± 5 (syst.)± 17 (lumi.) (e, µ combined) [3]

Total fiducial cross-section.

In table II we present total fiducial cross sections. Uncer-
tainties of the fixed-order NNLO (↵2

s) result, obtained by
taking the envelope of a variation of renormalization and
factorization scales by a factor of two, are particularly
small at the level of 0.5% and do not improve towards

Chen et al., 2203.01565



Impact of PDFs
• For illustration, resummed contribution only: for approximate N3LO of 

MSHT, NNLO of the same and (our default) NNPDF4.0 NNLO.
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FIG. 3: Purely resummed qT spectrum at different
logarithmic orders as the ratio to N4LLp using NNPDF40

NNLO PDFs in all cases.

substantially. About two-thirds of the total fiducial cross-
section originates from the integrated purely resummed
spectrum up to 20GeV. The results demonstrate that sys-
tematic differences between PDF sets are still dominant,
comparable to the effect of N3LO corrections in the PDFs.
Uncertainties for the MSHT20 aN

3
LO PDF set are larger

since it includes missing higher-order effects with the PDF
uncertainties. Overall, combined statistical and system-
atic PDF uncertainties are comparable to the residual
truncation uncertainties found in our paper.
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FIG. 4: PDF uncertainties of the purely resummed
N4LLp qT spectrum as the ratio to the MSHT20 NNLO

central value.
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Conclusion
• Calculations at NNLO show mainly smaller power corrections for qT slicing than for zero-

jettiness slicing, with computing times roughly equal.


• The small  resummation in CuTe-MCFM, accurate to N LL +NNLO, has been extended 
to all color singlet final states with pairs of massive vector bosons — public release soon.


• We have compared our predictions with the available data but the fine-grained 
experimental study of vector boson pair processes where the resummation effects will 
be crucial is, in the main, still to come.


• Extension to N LL  + N LO for Z production CPU-intensive but complete (public soon). 


• We have also resummed cross sections at N LL  +NNLO for all color singlet final state 
processes with a  at all rapidities. Necessary for Higgs production and for vector 
boson pair production.

qT
3

4
p

3

3
p

pveto
T
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qT vs. jettiness: photon processes

• Much more similar for photon cases, jettiness perhaps slightly favored.


• Photon isolation induces significant power corrections in both approaches
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Uncertainty estimate 
• Estimate the perturbative truncation uncertainty by varying the renormalization/hard 

scale and the factorization/resummation scale by the multipliers 
 
                 . 


• For fixed order μF = kF Q̂, μR = kR Q̂.


• Hard scale is kR Q̂. To set the resummation scale, first calculate characteristic scale 
q* = Q2 exp (−π/Ci /αs(q*)) and then set μ = max{kF × qT + q* exp(−qT /q*), 2 GeV} so 
that for small qT, μ approaches q* and it remains in the perturbative region. 


• Additional important resummation uncertainties:


• reintroduce rapidity scale dependence (fixed-order remnant of analytic regulator)


• vary parameters in transition function.

(kF; kR) ∈ {(2,2), (0.5,0.5), (2,1), (1,1), (0.5,1), (1,2), (1,0.5)}

26
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CMS results on lepton  in ZZqT
• CMS also present results on the lepton  

(summed over all leptons). Here the effect 
of resummation is minimal since 


• However the qT of the leading lepton ( ) 
shows an effect.

ql
T

ql,1
T
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Jet-veto in Higgs production

• In the main the perturbative series is well-behaved at moderate R and 
successive orders lie within the band of the preceding order


• Resummation important in this case. 
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