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Contributions to PDF uncertainties

Theoretical Experimental

Parametrization Methodology

In all four categories of uncertainties, we can further distinguish

PDF fitting accuracy and PDF sampling accuracy.

Accuracy in inputs —commonly (_I L) A new avenue to understand

integrated in global analyses. PDF tolerance.

[Kovarik et al, Rev.Mod.Phys. 92 (2020)]

—> This talk.
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From small to big data sets — sampling uncertainties

A = e dudble oS Confidence
—Bias intervals

Confidence
intervals

The truth //t Our model Small sample size Large sample size
of the truth

With an increasing size of sample n — o0, under a set of hypotheses, it is usually expected

~1
that the deviation on an observable decreases like <\/E ) . That’s the law of large numbers.

What uncertainties keep us from including the truth, u?

The law of large numbers disregards the quality of the sampling, — !freducible error

== Bjas
lllustration from:
Pavlos Msaouel (2022)
The Big Data Paradox in Clinical Practice
, _ Cancer Investigation, 40:7, 567-576
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Law of large numbers — Higgs XS

With an increasing size of sample n — ©0, under a set of
hypotheses, it is usually expected that the deviation on an
observable

with o the standard deviation, u the true and /i the determined
values. That’s the law of large numbers.

A toy sampling excercise

We take 300 X 3 groups of Higgs cross sections evaluated by 3 ~———

different groups.

We randomly select 300 out of the 900 cross sections.
The law of large number is fulfilled in this case: there is no bias in the
original sampling of the 3 sets of Higgs cross sections.
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Trio identity— Higgs XS
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distribution of n for a population size N/measure of the parameter space. o1 [ob]

The trio identity remedies to that problem be accounting for the sampling bias:

u — [ = (data+sampling defect) X (sampling discrepancy) X (inherent problem difficulty)

This identity originates from the statistics of large-scale surveys
[Xiao-Li Meng, The Annals of Applied Statistics, Vol. 12 (2018), p. 685]
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Xiao-Li Meng
The Annals of Applied Statistics

Trio |dent|ty Vol. 12 (2018), p. 685

u — i = (data+sampling defect) X (measure discrepancy) X (inherent problem difficulty)

l l

can tend to 6/4/n for random sampling

depends on the sampling algorithm

Confidence

= Irreducible error - _ iatistical model, quality of data, ...
intervals <

== Bias

Large sample size

The truth Our model

For a sample of n items from the population of size NN,
of the truth

we can consider an array built by the random spanning

of the binary responses of the N — n (0) and n (1)
items, so that

| N
u — i = Corr[observable, sampling quality] X 4 / — — 1 X o(observable)
n

Hickernell
MCQMC 2016
1702.01487
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Origin of sampling biases — experience with large population surveys

Surveys of the COVID-19 vaccination rate with very large samples of responses and small
statistical uncertainties (Delphi-Facebook) greatly overestimated the actual vaccination rate
published by the Center for Disease Control (CDC) after some time delay.

A Delphi-Facebook (n = 250,000)

= Census Household Pulse LAt
(n = 75,000) A

e Axios-Ipsos (n = 1,000) //

601 . cpC (benchmark) /'

Y

80 -
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Article | Published: 08 December 2021

Unrepresentative big surveys significantly
overestimated US vaccine uptake

Valerie C. Bradley, Shiro Kuriwaki, Michael Isakov, Dino Sejdinovic, Xiao-Li Meng & Seth Flaxman

20- /‘-/:f A
A

Nature 600, 695-700 (2021) | Cite this article

Vaccinated (at least one dose) (%)

Based on
[Xiao-Li Meng, The Annals of Applied Statistics, Vol. 12 (2018), p. 685]

The deviation has been traced to the sampling bias.
In contrast to the statistical error, the sampling bias can involve growth with the size of the sample.
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Sampling bias

The sample deviation can be large if the sampling is not sufficiently random.
Standard error estimates can be misleadingly small.

> critical role of controlling for sampling biases in determination of PDFs.
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Sampling bias

The sample deviation can be large if the sampling is not sufficiently random.
Standard error estimates can be misleadingly small.

> critical role of controlling for sampling biases in determination of PDFs.

How do we know the “data+sampling defect=confounding correlation” of our analysis?

A. Courtoy—IFUNAM Sampling bias CTEQ 2022




Sampling bias

The sample deviation can be large if the sampling is not sufficiently random.
Standard error estimates can be misleadingly small.

> critical role of controlling for sampling biases in determination of PDFs.

How do we know the “data+sampling defect=confounding correlation” of our analysis?

Tractable problems like the vaccination rate,
presidential elections or clinical practice can
benchmark their confounding correlation.

e.g. [Msaouel, Cancer Investigation, 40:7, 567-576]

In some cases, Monte Carlo integration problems
can optimize their sampling by considering the
effect of the confounding correlation.

e.g. [Hickernell, MCQMC 2016, 1702.01487]
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Sampling bias in PDF global analyses

|How do we know the “data+sampling defect=confounding correlation” of our analysis?

CT: tier-1 and tier-2 penalties related to tolerance criteria.
Size of uncertainties reflect a series of confounding sources.

Verification that proper spanning of parameter space is
compatible with total uncertainties (a posteriori).

" CT18 NNLO + unfitted ATLAS 8 TeV top data
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Dimensions of the problem given by the number 026 oz om0  os2 084 086
. . . (0.3, 125 GeV)
of parameters=eigenvector (EV) directions.
Hou et al, Phys.Rev.D 103 (2021)
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Sampling matters for PDF global analyses

PDF analyses are affected by the bias/variance balance due to the high number of

dimensions of the problem.

That’s our take-away message.

Sampling bias must be studied to faithfully reconstruct uncertainties.

Increasing interest in bias/variance
dilemma in high-dimensional problems

A. Courtoy—IFUNAM
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Uncertainties from global analyses of proton structure

Now focusing on the details of uncertainties for PDF analyses.

Recent advancements in the determination of unpolarized PDFs:
CT18, MSHT20, NNPDF4.0, ATLASpdf21 as well as PDF4LHC21.

Precision PDFs (Snowmass 21 WP) [2203.13923]
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Figure-of-merit/objective function and priors

Chi-square definition

N
(COV)‘ij = S?éij + Zﬁi,aﬁj,aa
a=1

Xt = X(Ti — D;)(cov™);(T; — Dy)
B

-

."3i,a — Uz',a-xz'-

For Hessian-based global analyses:

D;, T, s; are the central data, theory, uncorrelated error
B , is the correlation matrix for N, nuisance parameters.

Experiments publish o; ,.

To reconstruct f; ,, we need to decide on the normalizations X..

Choices:
« X, =D, : “experimental scheme”; can result in a bias

« X, = "fixed" T;: “t, scheme”; can result in a (different) bias

Figure-of-merit and tolerance criteria will define the size of uncertainties.

For Monte Carlo-based global analyses:

“The posterior probability for the parametrization depends on both the figure-of-merit [...] given the
NNPDF [M. Ubiali, HP2 2022 workshop, Durham, 2022/09]

parameters and on the prior probability.”

A. Courtoy—IFUNAM
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Do we understand sampling for QCD global analyses?

Sampling of multidimensional spaces (d > 20) can be exponentially inefficient and require n > 2¢ replicas
to obtain a convergent expectation value.
Most probably an intractable problem.

[Hickernell, MCQMC 2016, 1702.01487]
[Sloan,l.H.,Wo zniakowski, 1997]

How is sampling achieved in Monte Carlo-based PDF fits?

| _NNPDF4.0 MC 100 replicas
. . L —NNPDF4.0 MC 1000 replicas
Importance sampling — sampling on the space of the 86505 — NNPDF40 Hadan
data/bootstrap/resampling of data. 8600F PR T
T
. . = 8550F
Uncertainties are then unweighted averages. g
8500F
: . 8450F
o Caveat: we found that Hessian and MC uncertainties are ;
in good agreement. 815 820
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Do we understand sampling for QCD global analyses?

Sampling of multidimensional spaces (d > 20) can be exponentially inefficient and require n > 2¢ replicas
to obtain a convergent expectation value.
Most probably an intractable problem.

[Hickernell, MCQMC 2016, 1702.01487]
[Sloan,l.H.,Wo zniakowski, 1997]

How is sampling achieved in Monte Carlo-based PDF fits?

| _NNPDF40 MC 100 replicass .
. . L —NNPDF4.0 MC 1000 replicas
Importance sampling — sampling on the space of the S0 NNPDF4.0 Hessian A
data/bootstrap/resampling of data. 8600F
2 |
Uncertainties are then unweighted averages. g
8500F
: - s0F v :
o Caveat: we found that Hessian and MC uncertainties are ; SRR LHC 4T, lo
in good agreement. 815 820 825 830 835 840 845

Algorithm for observable-oriented verification of representative uncertainty

Specific QCD observables: only few effective large dimensions contribute the bulk of the uncertainty.
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Hopscotch scans

|Algorithm for observable-oriented verification of representative uncertainty

“Parton distributions need a representative sampling”
[AC et al, 2205.10444]

We determine dimensions of the problem from specific QCD observables: only few effective large
dimensions contribute the bulk of the uncertainty.

To sample the PDF dependence for Monte Carlo-based global analyses:
sample primarily the coordinates with large variations of physical cross section o.

Using NNPDF4.0 public code, we then employ: n = the number of replicas/EV directions/...

1. Basis coordinates in the PDF space — Hessian representation

2. Knowledge of 4-8 "large dimensions" in PDF space controlling variation of o
3. A moderate number of MC PDF replicas varying primarily in these directions
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How to play hopscotch?

In the Hessian representation, the chi square behaves like a paraboloid of n,
dimensions, thus defining a global minimum.

aram

Hessian and Monte Carlo representations of given PDF sets are shown to be
compatible — convertions exist in both ways.

Hence, a chi-square paraboloid can also be defined for Monte Carlo-based analyses.

For example, here’s a reconstructed eigenvector (EV) direction for the

NNPDF4.0 set, in blue.

Its shape indicates a larger paraboloid than the red curve:

e we can throw the marker in (linear combinations of) the directions
whose variation affect given cross sections the most

* we generate new replicas — the hopscotch replicas

* we draw the approximate regions defined by the latter for the cross
sections of interest
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A hopscotch scan of LHC cross sections for NNPDF4.0

Step 1
The NNPDF4.0 Hessian set (n = 50) defines a

coordinate system on a manifold corresponding to the
largest variations of the PDF uncertainty —red dots

and curve. [NNPDF, 2109.02653]

Step 2
Using the public NNPDF code, scan )(tzot along the 50

EV directions to identify a hypercube corresponding
to A)(z < T? (where T? > 0 is a user-selected value).

Lagrange multiplier scan confirms the approximate
Gaussian profiles, but suggest that there exist
solutions with Iower)(2 — green dots and blue curve.

PDFs
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 3

Guidance from specific cross sections:
we identify 4-7 EV directions that give the largest
displacements for a given A)(z per pair.

The contours are for Ay? = + 10,0, — 10, — 20 w.r.t.

NNPDF4.0 replica O (red).
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Ste 3 20} NN40nnlo EV 2 / 18 NN40Onnlo EV 4 / NN40nnlo EV/
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. \ 2 \ 2 4 6 8 0 2 4 6 8 10 -10 1 2 3 4 5
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Monte-Carlo sampling sensitivity for PDFs ————————
800+ R . LHC 13TeV, NNLO -
Cross sections for Higgs vs. Z and for W* vs. Z for LHC at 13TeV o, )
780} Y ) y s
Legend: : o
g
« CT18NNLO & CT18Z (NNLO) S 7eor ]
CT18 ——
« Nominal NNPDF4.0 CTIBZ ===ec
7401 NNPDF4.0: .
- NOMING| m—
« Green ellipses for f, prescription for the objective function: . AAxi<0
X§XD<O —_—
o found through the hopscotch scan — a dimensional reduction 720'_ MXow<-60== |
method. T a4 as
sool cCcTi8 —
» Blue and brown filled ellipses for experimental )(2 prescription: L CT18Z =eee
© areas of possible solutions corresponding to an equal or lower - NNPDF4.0°
2 2 ; : L NOMING e
(Ay~ < 0), and even_ (Ay~ < — 60) chi square w.r.t. the nominal ol AP<0 —
solution | A0 -
DXy <—60 m =
g
o 760} i
Hopscotch scans illustrated for the NNPDF4.0 —thanks to the publicly
available code.
Applicable to other global analyses using similar methodology and a o HHCT3TEV. NNLO |
large enough parameter space.
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Monte-Carlo sampling for PDF parametrizations: cross sections for LHC

I ' T T T T v T . . T . . . . I
800} IOl .. LHC 13TeV, NNLO -
— - .
— \
/
/
780+ . , |
a /
. 7
- ~
o)
=
o 760} |
CT18 ——
CT18Z =sm===
or NNPDF4.0: .
NOMINQ| s—
AX?<O
AX?XD<O —
720k 68% CL AXZ,,<—60 = = )
45 46 47 28
Ow[PD]

Color ellipses:
© areas of possible solutions corresponding to lower (Ay? < 0) w.r.t. the

nominal solution
o found through the hopscotch scan — a dimensionality reduction method.
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Monte-Carlo sampling for PDF parametrizations: cross sections for LHC

- - - r r . r r 1T T T T T 1
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Monte Carlo uncertainties from sampling 280 0 y y
. “ - / 7
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play a similar role as sampling of parameter
space in Hessian uncertainties. =
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Color ellipses:
© areas of possible solutions corresponding to lower (Ay? < 0) w.r.t. the

nominal solution
o found through the hopscotch scan — a dimensionality reduction method.
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Monte Carlo and Hessian representation — role of constraints

(s-8)/(s+S) (x,Q) at Q=1.7 GeV (sym. err)
NNPDF4.0 NNLO 68% (solid), alt. (Ax?)=0 (dashed)

Role of constraints in global analyses: can act as priors
to the final distributions.

T T T T J-\\ T4

Choice for positivity, integrability, large/small-x behavior,
... will affect PDF sets in the interpolation region.

Hopscotch replicas pass all CT criteria:
need for a benchmark on constraints?

0ol alt EV33' ;'
10 10% 10 0.01 0.02 0.05 0.1 0.2 0507

X

Hopscotch uncertainties wash out evidence ¥ (x.Q) at Q=1.7 GeV (sym. )

for large positive strangeness asymmetry and NNPDF4.0 NNLO 68% (solid), alt. (Ax?)=0 (dashed)
0020y — 71—

non-zero intrinsic charm.

alt. EV33

The understanding of theoretical constraints in MC vs.
Hessian is very relevant to polarized PDFs, TMDs, etc.
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Conclusions

The CT18 analysis includes various sources of theoretical uncertainties, displayed through various sets of PDFs.
Further ongoing studies focus on understanding the interplay between theoretical, parametrization and
methodological uncertainties.

Highlights on the sampling uncertainties:
1. A PDF fit with few parameters and A;(Z = | tolerance probably underestimates the parametric uncertainty.

2. Difficult to sample the full parameter space with many parameters without biases. Validating the final PDFs
may be easier than understanding the respective fitting algorithm.

3. A hopscotch scan intelligently reduces dimensionality of the relevant PDF parameter space. Can be
performed using public codes (LHAPDF + mcgen + xFitter/NNPDF fitting codes) to verify the PDF
uncertainty for a specific QCD cross section or observable.

4. Needs to be formally connected to known ML concerns — e.g. no free lunch theorems (more soon)

Hopscotch scans illustrated for the NNPDF4.0 —thanks to the publicly available code.
Impact on the uncertainties at small and large x, PDF ratios, correlations, strangeness asymmetry, fitted charm, ...
Insights applicable to other analyses using a large parameter space — CT/MSHT tolerance, polarized PDFs, etc.
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CT1 8 analySIS In d nUtShe” [Hou et al, Phys.Rev.D 103 (2021)]

o ldentify and include LHC data set available by mid-2018 with highest sensitivity to PDFs, using
fast Hessian techniques.

o Benchmark predictions for newly implemented processes

o Examine ~350 PDF parametrization forms — more on this in a few slides

o Examine QCD scale dependence in key processes

< Validate results using a strong set of goodness-of-fit tests

© Examine agreement between experiments using diverse statistical technigues
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CT18 analysis in a nutshell

[Hou et al, Phys.Rev.D 103 (2021)]

o ldentify and include LHC data set available by mid-2018 with highest sensitivity to PDFs, using

fast Hessian techniques.
o Benchmark predictions for newly implemented processes
o Examine ~350 PDF parametrization forms — more on this
o Examine QCD scale dependence in key processes
< Validate results using a strong set of goodness-of-fit tests

in a few slides

© Examine agreement between experiments using diverse statistical technigues

Four sets proposed:
CT18 (nominal)
CT18A (include ATLAS 7TeV),

CT18X (DIS scale variation u? ,,,; = 0.8 <Q2 - 0'3G6V2>),

%03

CT18Z (ATLAS 7TeV+scale variation)

CT18 and CT18Z span the most different hypotheses, and
the combination of the two represents the most complete
uncertainty.
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Theoretical uncertainties in CT18

Theory predictions and choice of scale

Choice of scale for inclusive jet data leads to a different gluon PDF yet
contained in the CT uncertainty.
Resilience in global fit reflected through the tolerance.

Scale dependence and small-x resummation — K. Xie (in progress)

NNPDF and xFitter adopts BFKL to resum small-x logs. CT adopt a
saturation DIS scale and obtain similar quality of description of data.

Small-x resummation enhances gluon PDF, similarly to N3LO (MSHT, see T.
Cridge’s talk)

Dependence on m,_. —CT14 Intrinsic Charm

Study of dependence on the charm pole mass:
CT14 Intrinsic Charm analysis [Hou et al., arXiv:1707.00657]
CT18 Fitted Charm analysis (very soon)
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Toward robust PDF uncertainties

Strong dependence on the definition of corr.

syst. errors would raise a general concern:

Overreliance on Gaussian distributions
and covariance matrices for poorly

understood effects may produce very
wrong uncertainty estimates

[N. Taleb, Black Swan & Antifragile]

For instance, the
cov. matrix may
overestimate

the correlation
among discrete
data points,
resulting in a too
aggressive error

estimate
[Anwar, Hamilton, P.N.,
arXiv:1905.05111]

2021-05-03
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The CT18/CT18Z uncertainties aim to
be robust: they largely cover the
spread of central predictions obtained
with different selections of experiments
and assumptions about systematic
uncertainties

P. Nadolsky, DIS 2022 workshop 1



Setting for NNPDF4.0 code

The evaluation of)(2 for NNPDF4.0 nnlo replicas is done by the public NNPDF code [NNPDF, EPJC 81],
with its default setting.

)(2 is computed by the perreplica chi2 table function of validphys program of the public
NNPDF code.

The kinematics cuts for the correlated uncertainties are fixed as the same of the NNPDF4.0 global
analysis.

The minimum value of Q2 and W? for DIS measurements are hence chosen to be 3.49 GeV and 12.5
GeV respectively.
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Reducing PDFs and o, uncertainties for EW and BSM physics

Theoretical progress elevates precision on pQCD predictions.

Measurements of several SM parameters depend on PDF
uncertainties.

Future experiments will potentially increase the precision of PDFs:
LHeC, EIC, HL-LHC,...

Future global analyses will require thorough understanding of
various sources of uncertainties in the PDF determination.

PDF4LHC21 benchmarking exercise: Tl [ wsHT2ged /
comparison of uncertainties for same sets of data and QCD settings. = | -- CT18(red)
= 0.10 -~ NNPDF31(red) |
PDFALHC21 [2203.05506] 3 0 |
ch 0.06
The uncertainties for CT18, MSHT20 and NNPDF3.1 reduced sets o DOt

are still different. Key role played by methodology.
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A hopscotch scan of

_HC cross sections for NNPDF4.0 PDFs
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Hopscotch NN4.0 replicas

LHAPDFG6 grids available at htips://ct.hepforge.org/PDFs/2022hopscotch/

20

10}
1. Alternative (second) EV sets with Ay? = 0, — 4l
for 50 EV directions _105

NN40full t0 EV | /'

4§
-4 -3 -2 -1 0
2. A total 2329 PDF sets from hopscotch scans on NN replica 0

oz, 0w+, Ow-, 0y, 0¢f total inclusive cross
sections at the LHC 13 TeV

For x£, and xZ,, definitions in the NNPDF4.0
code

0z[pb]

7700 ATLAS 13TeV

Codes to generate LHAPDF grids for _ |
hopscotch replicas available by request. e Ee R jer
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 4

For each pair of cross sections, we generate 300 replicas by sampling uniformly along the “large” EV directions.

Sortthe n

pairs

0z[pb]

765

x 300 resulting replicas according to their Ay? w.r.t. to NN40 replica 0, here for A)(ezxp.

795/
790,
785
780,
775/
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AXZ:O & approximate region \ 4
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vV v v
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Ax*=-80 v vv y 'V
\
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\ A/ \ 4 Vv
4 \ 4
v v
v v
h 4
\
v

ATLAS 13TeV

Each of the Ay? = 0 = 3 replicas
is an acceptable PDF set from
the NNPDF4.0 fit.

The blue ellipse (constructed using a convex hull method) is an approximate region containing all found replicas

with Ay? = 0+ 3.

The blue area is larger than the nominal NNPDF4.0 uncertainty (red ellipse).
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Monte-Carlo sampling for PDF parametrizations: cross

sections for LHC
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