the proton's intrinsic charm remains concealed

Tim Hobbs – Argonne National Lab

arXiv: 2211.01387

CT18 FC: revisiting nonperturbative or *fitted charm* (FC)

C T E Q

reassess status of FC, especially following recent LHC data

extended talk tomorrow (7:30am CST), International Light Cone Advisory Committee [ILCAC] recent paper, arXiv: 2211.01387

M. Guzzi, T. Hobbs, K. Xie, J. Huston, P. Nadolsky, and C.-P. Yuan

→ for the CTEQ-Tung et al. (CTEQ-TEA) Collaboration

this talk

- i intrinsic charm (IC) vs. fitted charm (FC) in QCD
- ii treatment of key expts with potential FC sensitivity
- iii CT18 FC PDF analysis
- iv comparison with other recent FC studies

conclusion(s): necessary developments; high-impact data, calculations

Extrinsic and intrinsic sea PDFs in nonperturbative models

"Extrinsic" sea

[maps on leading-power sea production from light flavors]

"Intrinsic" sea (excited Fock nonpert. states; beyond the leading-power production)

→ "intrinsic" charm (IC) from nucleon WF models based on this picture

... "extrinsic" generated radiatively; calculable in pQCD

implementations of perturbative ('extrinsic') charm in QCD analyses

$$c(x, Q^2 \le m_c^2) = \bar{c}(x, Q^2 \le m_c^2) = 0$$

(a vanishing boundary condition for perturbative evolution)

 ullet intermediate Q^2 :

$$F_{2, \text{ PGF}}^{c}(x, Q^{2}) = \frac{\alpha_{s}(\mu^{2})}{9\pi} \int_{x}^{z'} \frac{dz}{z} C^{\text{PGF}}(z, Q^{2}, m_{c}^{2}) \cdot xg\left(\frac{x}{z}, \mu^{2}\right)$$

• high Q^2 :

massless DGLAP (i.e., variable flavor-number schemes)

Fock expansion

Brodsky, Hoyer, Peterson, Sakai (BHPS); Phys. Lett. B93 (1980) 451.

• IC PDF: transition matrix element, $|\text{proton}\rangle \rightarrow |uudc\bar{c}\rangle$

$$P(p \to uudc\bar{c}) \sim \left[M^2 - \sum_{i=1}^5 \frac{k_{\perp i}^2 + m_i^2}{x_i} \right]^{-2}$$

- P(x₅)
 3.0
 1.0
 -
- → calculable in old-fashioned perturbation theory; scalar field theory
 - → generically yields valence-like shape; governed by charm masses

$$m_c = m_{\bar{c}} \implies c^{\text{BHPS}}(x) = \bar{c}^{\text{BHPS}}(x)$$

alternative but similar representations exist

meson-baryon models (MBMs): 5-quark states from hadronic interactions

- we implement a framework which conserves spin/parity
- * nonperturbative mechanisms are needed to break $c(x,Q^2 \leq m_c^2) = \bar{c}(x,Q^2 \leq m_c^2) = 0!$

We build an **EFT** which connects IC to properties of the hadronic spectrum: [TJH, J. T. Londergan and W. Melnitchouk, Phys. Rev. D89, 074008 (2014).]

$${}^{ullet}|N
angle = \sqrt{Z_2} \; |N
angle_0 \; + \; \sum_{M,B} \int \! dy \, f_{MB}(y) \, |M(y); B(1-y)
angle$$
 $y=k^+/P^+$: k meson, P nucleon

$$c(x) = \sum_{B,M} \left[\int_x^1 \frac{d\bar{y}}{\bar{y}} f_{BM}(\bar{y}) c_B\left(\frac{x}{\bar{y}}\right) \right]$$

• a similar *convolution* procedure may be used for $\bar{c}(x)$. . .

IC (MBM) depends on UV scale parameter, Λ ; predicts high-x excess

*tune universal cutoff $\Lambda=\hat{\Lambda}$ to fit $\underline{\sf ISR}\ pp o \Lambda_c X$ collider data multiplicities, momentum sum:

$$\langle n \rangle_{MB}^{(\text{charm})} = 2.40\% \,_{-1.36}^{+2.47}; \qquad P_c := \langle x \rangle_{\text{IC}} = 1.34\% \,_{-0.75}^{+1.35}$$

$$P_c := \langle x \rangle_{\rm IC} = 1.34\% \begin{array}{l} +1.35 \\ -0.75 \end{array}$$

$$F_2^{c\bar{c}}(x,Q^2) = \frac{4x}{9} \left[c(x,Q^2) + \bar{c}(x,Q^2) \right]$$

 \rightarrow evolve to EMC scale, $Q^2=60~{\rm GeV^2}$

low-x H1/ZEUS data check massless **DGLAP** evolution

IC models and formal QCD

- models simulate nucleon wave function; aim to *mimic* nonpert QCD
 - → bound-state structure driven by constituent-quark masses
 - → integrate away gluonic degrees-of-freedom
 - → connect to SU(4) flavor-symm breaking (in meson-baryon models [MBMs])

- <u>BUT</u>: IC models in systematically-improvable QCD calculations unclear
 - → based on *truncated* Fock-state or similar wave function expansions
 - → no obvious mapping onto factorization theorems
 - \rightarrow ambiguity regarding fact. scale, μ , in IC models

$$F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} \, \mathcal{C}_a\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha_s(\mu)\right) \frac{f_{a/p}(\xi, \mu)}{f_{a/p}(\xi, \mu)} + \mathcal{O}(\Lambda^2/m_c^2, \Lambda^2/Q^2)$$

PDF analyses extract <u>fitted charm</u> (FC) ≠ intrinsic charm (IC)

IC may have complicated interplay with nonleading twist

 IC can be developed in twist expansion; systematic ordering of leading-, power-suppressed contributions

control needed to avoid absorbing non-universal contributions into IC

few expts with 'smoking gun' sensitivity to FC; but EMC data (?)

J. J. Aubert et al. (EMC), NPB213 (1983) 31-64.

• historically, charm structure function data, $F_2^{c\bar{c}}$, from EMC were suggestive

Candidate NNLO PDF fits	$\chi^2/N_{ m pts}$			
	All Experiments	HERA inc. DIS	HERA $c\bar{c}$ SIDIS	EMC $c\bar{c}$ SIDIS
CT14+EMC (weight=0), no IC	1.10	1.02	1.26	3.48
CT14+EMC (weight=10), no IC	1.14	1.06	1.18	2.32
CT14+EMC in BHPS model	1.11	1.02	1.25	2.94
CT14+EMC in SEA model	1.12	1.02	1.28	3.46

Z+c potentially sensitive to IC; sizable theory uncertainties

T. Boettcher, P. Ilten, M. Williams, 1512.06666

- 2022 LHCb 13 TeV data: (Z+c) / (Z+jet) ratios; 3 rapidity bins
 - → calculated NLO cross-section ratio similarly depends on showering, hadronization

NNLO calculations recently available, but not implemented in PDF fits

R. Gauld, et al.; arXiv: 2005.03016.

M. Czakon, et al.; arXiv: 2011.01011.

theory uncertainties currently larger than PDF variations

- assuming MCFM at NLO, can vary underlying PDFs, test inclusion of FC
 - → FC slightly enhances ratio; not enough to improve agreement with data

- theory accuracy not yet sufficient to leverage expt. precision for PDFs
 - → need NNLO theory interface; control over showering, final-state effects

might other HEP experiments be sensitive to FC?

- must be assessed using comprehensive global QCD analysis of PDFs
- CT performed such an analysis, CT14 IC in arXiv: 1707.00657
 - \rightarrow found $\langle x \rangle_{FC} < 2\%$, but with large uncertainty consistent with zero FC

$$\langle x \rangle_{\text{FC}} = \int_0^1 dx \, x [c(x, Q_0) + \bar{c}(x, Q_0)]$$

 included many details on theory and analysis of IC

• since CT14 IC, many LHC measurements have been released; natural to ask if these possess *collective* sensitivity to FC

- FC scenarios traverse range of high-x behaviors from IC models
 - → fit implementation of BHPS from CT14IC (BHPS3) on CT18 or CT18X (NNLO)
 - → fit two MBMs: MBMC (confining), MBME (effective mass) on CT18
- investigate constraints from newer LHC data in CT18

• FC uncertainty quantified by normalization via $\langle x \rangle_{FC}$ for each input IC model

$$\rightarrow \langle x \rangle_{\rm FC} \approx 0.5\% \ (\Delta \chi^2 \gtrsim -25) \ {\rm vs.} \ \langle x \rangle_{\rm FC} \approx 0.8 - 1\% \ (\Delta \chi^2 \gtrsim -40) \ {\rm CT14 \ IC}$$

FC PDF moments as F.o.M.

Nonperturbative charm moments $Q_0 = 1.27 \text{ GeV}$ Intervals of $\Delta \chi^2 < 10$

 moments of the FC PDFs often used to characterize magnitude, asymmetry

$$\langle x^n \rangle_{c^{\pm}} = \int_0^1 dx \, x^n (c \pm \bar{c})[x, Q]$$

...at NNLO.

$$\langle x \rangle_{\rm FC} \equiv \langle x \rangle_{\rm c^+} [Q_0 = 1.27 \,{\rm GeV}]$$

$$= 0.0048 ^{+0.0063}_{-0.0043} (^{+0.0090}_{-0.0048}), \text{ CT18 (BHPS3)}$$

$$= 0.0041^{+0.0049}_{-0.0041} (^{+0.0091}_{-0.0041}), \text{ CT18X (BHPS3)}$$

$$= 0.0057^{+0.0048}_{-0.0045} \left(\frac{+0.0084}{-0.0057} \right), \text{ CT18 (MBMC)}$$

$$= 0.0061 {}^{+0.0030}_{-0.0038} ({}^{+0.0064}_{-0.0061}), \text{ CT18 (MBME)}$$

$$\Delta \chi^2 \le 10$$

$$\Delta \chi^2 \le 30$$

(restrictive tolerance) (~CT standard tolerance)

FC PDF moments as F.o.M.

Nonperturbative charm moments $Q_0 = 1.27$ GeV Intervals of $\Delta \chi^2 < 10$

- even restrictive uncertainties give moments consistent with zero
 - → broaden further for default CT tol.
 - \rightarrow lattice may give $\langle x \rangle_{c^+}$, $\langle x^2 \rangle_{c^-}$

$$\langle x \rangle_{\rm FC} \equiv \langle x \rangle_{\rm c^+} [Q_0 = 1.27 \,{\rm GeV}]$$

$$= 0.0048 ^{+0.0063}_{-0.0043} (^{+0.0090}_{-0.0048}), \text{ CT18 (BHPS3)}$$

$$= 0.0041^{+0.0049}_{-0.0041} \left(\frac{+0.0091}{-0.0041} \right), \text{ CT18X (BHPS3)}$$

$$= 0.0057_{-0.0045}^{+0.0048} \left(\frac{+0.0084}{-0.0057} \right), \text{ CT18 (MBMC)}$$

$$= 0.0061 {}^{+0.0030}_{-0.0038} ({}^{+0.0064}_{-0.0061}), \text{ CT18 (MBME)}$$

$$\Delta \chi^2 \le 10 \qquad \qquad \Delta \chi^2 \le 30$$

(restrictive tolerance) (~CT standard tolerance)

data pull opposingly on $\langle x \rangle_{FC}$; depend on FC scenario, enhancing error

- pQCD only very weakly breaks $c = \bar{c}$ through HO corrections
 - → large(r) charm asymmetry would signal nonpert dynamics, IC
 - \rightarrow MBM breaks $c = \bar{c}$ through hadronic interactions

- consider two MBM models as examples (not predictions)
- → asym. small but ratio (left) can be bigger; will be hard to extract from data

- NNPDF have recently claimed 3σ evidence for 'IC'
 - \rightarrow based on local (x-dependent) deviation of FC PDF from perturbative scenario
 - → implies crucial dependence on size and shape of PDF uncertainty

- \rightarrow NNPDF FC distribution is particularly hard, peaking at $x \gtrsim 0.4$
- \rightarrow intriguing behavior at low x

- iv
 - large perturbative instability from MHOU affects low-x behavior
 - → matching at fixed NNLO gives negative FC, unlike IC models
 - \rightarrow MHOU persists to quite high x < 0.1 or more

- \rightarrow MHOU excluded to obtain a nominal charm fraction, $\langle x \rangle_{\rm FC} = 0.62 \pm 0.28\%$
- \rightarrow if MHOU is included, consistency with zero: $\langle x \rangle_{\rm FC} = 0.62 \pm 0.61\%$

specific experiments in NNPDF IC

- 3σ significance reached with inclusion of LHCb Z+c data
 - \rightarrow theory uncertainties for these data (e.g., showering algorithms) remain large

- NNPDF approach 3σ significance with baseline dataset
 - → similar group of expts in CT18 FC do not yield strong signal

connected to differing PDF uncertainty quantifications

more representative sampling can enlarge MC uncertainties

Courtoy et al., arXiv: 2205.10444.

- default replica-training in MC studies may omit otherwise acceptable solutions
- more comprehensive sampling impacts PDF errors of cross sections

substantially broaden high-x FC error

more representative sampling can enlarge MC uncertainties

Courtoy et al., arXiv: 2205.10444.

• default replica-training in MC studies may omit otherwise acceptable solutions

→ alternate fitting methodologies (NNPDF3.1 vs. 4.0) produce significant differences in PDF uncertainty

both curves based on same underlying data

future data will inform FC

EIC will constrain FC scenarios

enhanced FC momentum implied by EMC data \rightarrow small high-x effects in structure function; need high precision

 essential complementary input from LHC; CERN FPF

EIC will measure precisely in the few-GeV, high-*x* region where FC signals are to be expected

conclusions

- size, shape of nonpert charm remains indeterminate
 - → theoretical ambiguities in relation between FC/IC unresolved
 - → need more sensitive data; FC currently consistent with zero

concordance with enlarged error estimates: $\langle x \rangle_{\rm FC} \sim 0.5\%$, well below evidence-level

- need more NNLO and better showering calculations (e.g., for Z+c)
- further progress in quantifying and estimating PDF uncertainties

- opportunities to improve knowledge of FC:
 - → promising experiments at LHC; EIC; CERN FPF
 - → lattice data on key charm PDF moments; quasi-PDFs
 - → direct benchmarking of FC among PDF fitting groups