New CC0π GENIE Tune for MicroBooNE

Steven Gardiner

- 2 February 2022
- **NuSTEC Cross Theory and Generators Working Group Seminar**

Introduction

- Inaugural seminar for NuSTEC CTGWG
- I'm assuming that my audience

 - Knows about nuclear effects and key terms like CCQE, GENIE, etc.
- This talk will explore the recent "MicroBooNE Tune" of GENIE (arXiv:2110.14028)
 - What was tuned and how
 - Connections to tunes by other experiments
 - Lessons learned along the way

- Already cares about neutrino cross sections and improving generators

The MicroBooNE experiment

- Liquid argon time projection chamber (LArTPC) in the Fermilab Booster Neutrino Beam
 - 60-ton active mass
- Investigate an anomaly seen by MiniBooNE in the same beam line
 - Low Energy Excess (LEE) of electron-like events
- Neutrino-argon cross-section measurements, BSM searches, detector R&D, etc.
- High-quality interaction modeling critical to a correct interpretation of MicroBooNE data
 - Starting point for further data-driven constraints

3.0

Recent generator tunes by neutrino experiments

- Tunes of GENIE presented by MINERvA, NOvA with some similarities
 - MnvGENIE v1: GENIE v2.8.4 with Valencia-style RPA, 2p2h (with extra tuning), nonresonant pion production down by 43%. Phys. Rev. D 101, 112007 (2020)
 - MnvGENIE v2: v1 plus RPA-like suppression of RES at low Q²
 - NOvA: GENIE v2.12.2 with $M_A = 1.04$ GeV, MINERvA-style RPA for QE + RES, 57% reduction of nonresonant pion production, Empirical 2p2h with custom (q^0 , $|\mathbf{q}|$) weights. Eur. Phys. J. C 80, 1119 (2020)

- Newer NOvA model briefly described in <u>arXiv:2108.08219</u>.

- T2K uses a tuned version of NEUT. See <u>Phys. Rev. D 103, 112008 (2021)</u>.
- MicroBooNE has recently produced its own tune of GENIE
 - Opportunity to "compare notes" with the community
 - Similar choices, but details and implementation are different
 - Also some takeaways from the experience are worth exploring

Base model set for the tuning effort

- MicroBooNE has adopted the GENIE v3.0.6 G18_10a_02_11a model as a starting point for a dedicated tune
- **10a**: model set with key theory improvements for low energies
 - Local Fermi gas nuclear model
 - Valencia QE + 2p2h
 - Berger-Sehgal RES, Bodek-Yang DIS
 - Updated FSI treatment (hA2018)
- 02_11a: Parameter tuning performed by GENIE on bubble-chamber data, focus on RES + DIS

MiniBooNE data from **Phys. Rev. D 81, 092005 (2010)**

Base model set for the tuning effort

- MicroBooNE has adopted the GENIE v3.0.6 G18_10a_02_11a model as a starting point for a dedicated tune
- **10a**: model set with key theory improvements for low energies
 - Local Fermi gas nuclear model
 - Valencia QE + 2p2h
 - Berger-Sehgal RES, Bodek-Yang DIS
 - Updated FSI treatment (hA2018)
- 02_11a: Parameter tuning performed by GENIE on bubble-chamber data, focus on RES + DIS

GENIE Collaboration, Phys. Rev. D 104, 072009 (2021)

Motivation for tuning CC0π

- Consistent deficit seen in many MicroBooNE data/MC comparisons
 - v_µ control sample for CCQE-like
 LEE analysis

Untuned GENIE v3 model

 Similar patterns seen in results from other experiments

- Ehad spectrum from NOvA near detector

Motivate systematics on several important model parameters

Choice of reference data for tuning

- Mean BNB neutrino energy: ~0.8 GeV
 - Similar to J-PARC beam used by T2K
 - Lower than NuMI beam used by MINERvA and NOvA
- CC0 π events are dominant, particularly at low energies
- Fits to high-energy experiments require much attention to inelastic modes (RES/DIS)
- Subtleties arise for fits to BNB experiments (possible double-counting of flux systematics, etc.)
- T2K 2016 CC0π data chosen
 - Independent measurement in a similar beam line
 - Double-differential in muon kinematics
- Analysis I: results reported over full angular range

A "theory-driven tune" for MicroBooNE

- GENIE provides a comprehensive model: many aspects could potentially be tuned
- We chose a small number of parameters that
 - 1. Reflect known uncertainties in models of CC0π cross sections
 - 2. Cannot (easily) be constrained by existing electron-nucleus datasets (e.g., k_F excluded)
 - 3. Can plausibly be constrained by the T2K 2016 dataset
- Adopted list: two QE and two 2p2h parameters
 - CCQE axial mass and RPA strength
 - CC 2p2h normalization and shape

T2K data from **Phys. Rev. D 93, 112012**

CCQE RPA strength

- Adjusts CCQE cross section to account for long-range nucleonnucleon correlations
 - Most obvious effect is a suppression at low Q²
 - Evaluated by the Valencia group using the Random Phase
 Approximation
- We implement an interpolation between the Valencia correction and no correction at all

 $\frac{d\sigma}{d\mathbf{x}} = (1-k)\frac{d\sigma^{\text{RPA}}}{d\mathbf{x}} + k\frac{d\sigma^{\text{no RPA}}}{d\mathbf{x}}$

CC 2p2h normalization and shape

- The available models differ widely in both their overall normalization and shape in lepton kinematics
- We treat these differences in our fit using two parameters
 - Simple rescaling of the CC 2p2h total cross section
 - Shape-only morphing between Valencia and GENIE Empirical

Joint (q⁰, $|\mathbf{q}|$) distributions across the parameter space for shape variable k (BNB v_µ CC 2p2h on argon)

CC 2p2h normalization and shape

- The available models differ widely in both their overall normalization and shape in lepton kinematics
- We treat these differences in our fit using two parameters
 - Simple rescaling of the CC 2p2h total cross section
 - Shape-only morphing between Valencia and GENIE Empirical

$$P(T_{\ell}, \cos \theta_{\ell}) = (1-k) \frac{1}{\sigma^{\text{Valencia}}} \frac{d\sigma^{\text{Valencia}}}{dT_{\ell} d\cos \theta_{\ell}} + k \frac{1}{\sigma^{\text{Empirical}}} \frac{d\sigma^{\text{Empirical}}}{dT_{\ell} d\cos \theta_{\ell}}$$

Fit to T2K data: a problem emerges

- NUISANCE used with slight modifications to accommodate our new parameters
- Add parameters one-by-one in a series of fit attempts
 - Full 4-parameter fit shown
- Published covariance matrix used in χ^2 goodness-of-fit calculations
- Initial results were suspiciously low

Peelle's Pertinent Puzzle

- **NEUT fit** to MINERvA CC0 $\pi \delta p_T$
- NuWro fit to MINERvA CC0π data: Phys. Rev. C 102, 015502 (2020)
- Unphysically low fit results!
 - Significant bin-to-bin correlations
 - "Ordinary" covariance matrix: absolute uncertainty constant
- Compensate for poor fit with lower normalization (larger *relative* uncertainty)

Simple workaround: just ignore correlations (use diagonal covariance matrix elements only)

Fit to T2K data: neglect bin-to-bin correlations

• Series of 4 fits, final uncertainties inflated to approximately cover intermediate variations

	MaCCQE fitted value	CC2p2h Norm. fitted value	CCQE RPA Strength fitted value	CC2p2h Shape fitted value	$egin{array}{c} { m T2K} \ \chi^2/{ m N}_{bins} \end{array}$
Nominal (untuned)	$0.961242~{ m GeV}$	1	100%	0	106.7/58
Fit MaCCQE + CC2p2h Norm.	$1.14{\pm}0.07~{ m GeV}$	$1.61{\pm}0.19$	100% (fixed)	0 (fixed)	71.8/58
Fit MaCCQE + CC2p2h Norm. + CCQE RPA Strength	$1.18 \pm 0.08 \text{ GeV}$	$1.12{\pm}0.38$	(64±23)%	0 (fixed)	69.7/58
Fit MaCCQE + CC2p2h Norm. + CCQE RPA Strength + CC2p2h Shape	1.10±0.07 GeV	$1.66{\pm}0.19$	(85±20)%	$1^{+0}_{-0.74}$	52.5/58

Fit to T2K data: neglect bin-to-bin correlations

- Series of 4 fits, final uncertainties inflated to approximately cover intermediate variations
- Adopted parameter values and uncertainties:
 - CCQE axial mass: 1.1 ± 0.1 GeV
 - RPA strength: $85 \pm 40\%$ of Valencia correction
 - CC 2p2h normalization: 1.66 ± 0.5 times nominal
 - CC 2p2h shape: k = 1 → Empirical (uncertainty is taken to be the full [0,1] range)

Parameter correlations

 2p2h shape: orthogonal to other parameters by design

CCQE RPA

 Strong negative correlation between 2p2h norm and **CCQE** parameters

- Some positive correlation between M_A and RPA
 - Both influence norm+shape

CCQE RPA	0.233	-0.791	0.005	1.000	
2p2h Shape	0.002	-0.005	1.000	0.005	
2p2h Norm.	-0.511	1.000	-0.005	-0.791	
CCQE M _A	1.000	-0.511	0.002	0.233	

CCQE M 2p2h Norm.2p2h Shape CCQE RPA A

17

The "norm-shape" covariance matrix

- Avoid PPP by transforming to a new basis
 - One row contains normalization, the others shape
 - Relative uncertainties conserved under normalization changes

$$x_{\text{norm}} = \sum_{i} x_{i} \qquad y_{i} = \begin{cases} x_{i} / x_{\text{norm}} & i < N \\ x_{\text{norm}} & i = N \end{cases}$$

- The norm-shape covariance matrix Y can be computed from the original one X provided by an experiment. See <u>Phys. Rev. D 103, 113008 (2021)</u>.
- Thanks to Jaafar Chakrani and Stephen Dolan for sharing their implementation

$$\chi_{\rm NS}^2 = \sum_{i,j} (y_i - y_i^{\rm MC}) (Y^{-1})_{ij} (y_j - y_j^{\rm MC})$$

Application to MINERvA CC0 π δp_T

- Minimize $\chi^2_{\rm NS}$ instead of the ordinary χ^2
- Fit result much more satisfactory
- What happens when we try this for the fits to T2K data?

Alternative norm-shape T2K fit results

- Hard to distinguish from the MicroBooNE Tune model by eye
- Best-fit parameter values agree within uncertainties
 - "Diagonal-only" approach deemed sufficient in this case
- Should PPP influence how our data releases are presented?

	MaCCQE fitted value	CC2p2h Norm. fitted value	CCQE RPA Strength fitted value	CC2p2h Shape fitted value	$egin{array}{c c} ext{T2} \ \chi^2_{di} \end{array}$
Nominal (untuned)	$0.961242~{ m GeV}$	1	100%	0	106
"MicroBooNE Tune"	$1.10{\pm}0.07~{ m GeV}$	$1.66{\pm}0.19$	$(85\pm20)\%$	$1^{+0}_{-0.74}$	52.
"Alternate fit"	$1.04{\pm}0.10~{ m GeV}$	$1.44{\pm}0.42$	$(67\pm16)\%$	$0.91\substack{+0.09 \\ -0.18}$	55.

Before and after: CC inclusive visible energy

arXiv:2110.14028

(v_µ control sample for CCQE-like LEE analysis)

v_{μ} CC inclusive angular distribution

Phys. Rev. Lett. 123, 131801 (2019)

MICROBOONE-NOTE-1069-PUB

Not always a "slam dunk": CC inclusive cross sections

• The GENIE v2 central value is occasionally better in some regions of phase space - Notably at low v. However, uncertainty coverage is adequate in that region.

CC inclusive total cross sections

- Modest enhancement compared to untuned GENIE v3
- Significantly smaller than GENIE v2 at low energies

- Very similar behavior for v_{μ}

ν_e CC inclusive total cross section

Usage in the LEE analyses: CC0πNp

- Seen to give a good treatment of v_{μ} data within uncertainties
 - Reconstructed E_v shown
 - Similar performance for angular distribution, etc.

- Data-driven constraint applied in v_e channel
 - Modest differences from unconstrained model
 - Generally within quoted uncertainties

26

Some takeaways from the tune

- Best-fit prefers slight weakening of Valencia RPA corrections
 - Original calculation within fit uncertainty
- Weak preference for "one peak" Empirical 2p2h shape
 - More similar to SuSAv2 than Valencia
 - Stronger preference in norm-shape alternative fit
- Agreement with MINERvA, NOvA that overall CC0π strength needs to be enhanced
 - An interesting difference exists . . .

2.7

CCQE enhancement and lattice QCD

- The MicroBooNE Tune adopts an enhancement of CC QE and 2p2h
- Lattice QCD: ~20% increase CCQE strength
 - Consistent with mean weight of ~1.2 for MicroBooNE Tune CCQE events
 - Not a nuclear effect. This may thus translate well from T2K to MicroBooNE
- Worth further investigation
 - Not purely a normalization difference

New systematic uncertainties for GENIE Reweight

Tune ingredients: RPA strength, CC 2p2h normalization + shape

- Coulomb_CCQE: EM potential used for Coulomb corrections (±30%)
- FracPN_CCMEC: isospin of initial struck nucleon pair (±20%)
- FracDelta_CCMEC: strength of Δ -like component in Valencia 2p2h (±30%)
- DecayAngMEC: angular distribution of outgoing nucleons - 0 = isotropic, 1 = $\propto \cos^2 \theta$ (measured with respect to **q**)
- NormCCCOH, NormNCCOH: total cross section for coherent π production (±100%) - Previous treatment incompatible with Berger-Sehgal COH model in GENIE v3
- ThetaDelta2NRad: angular distribution in
 - Similar to DecayAngMEC

See "MicroBooNE Tune" paper for details (arXiv:2110.14028). Merged into GENIE v3.2.

$$\Delta \to N + \gamma$$

29

Some limitations of the "MicroBooNE Tune" strategy

- No additional uncertainty assessed on the $C \rightarrow Ar$ scaling - However, chosen uncertainties are conservative (inflated from raw fit results)
- RPA and 2p2h shape variations each involve only one degree of freedom
 - Wide variations, but along a single "contour" in parameter space
 - Simple for fitting, but other options could have been attempted
- Method for PPP avoidance very simple - Likely inadequate for more complicated cases

Summary

- MicroBooNE has adopted its first tuned generator model
 - Used to bring out first LEE results last October
- CC0 π enhancement appears similar to other tunes - Increase of both QE and 2p2h
- Next-generation effort can expand the scope
 - Hadronic degrees of freedom (e.g., proton FSIs)
 - Newer data, including MicroBooNE's
 - Electron scattering
- Goodness-of-fit has subtleties (e.g., PPP) that must be considered carefully

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

