

Achilles: A Modern Theorist-Driven Event Generator

Joshua Isaacson

In Collaboration with: S. Höche, W. Jay, D. Lopez Gutierrez, A. Lovato, P.A.N. Machado, N. Rocco

Based on: 2007.15570, 2110.15319, 2205.06378

Cross Theory Generator Working Group Meeting

7 June 2022

Achilles: A CHIcago Land Lepton Event Simulator

Project Goals:

- Theory driven
- Develop modular neutrino event generator
- Provide means for easy extension by end users
- Provide automated BSM calculations for neutrino experiments
- Evaluate theory uncertainties

.d8b. d8' 8b 8800088 88~~~88 88~~~88 88 88 YP YP	.088b. d8P Y8 8P 8b Y8b d8 `Y88P'	db db 88 88 8800088 8888 88 88 88 88 YP YP	d888888b 88 88 .88 .88. Y888888P	db 88 88 88 88 88booo. Y88888P	db 88 88 88 88 88booo. Y88888P	d88888b 88' 8800000 88~~~~ 88. Y88888P	.d8888. 88' YP `8bo. `Y8b. db 8D `8888Y'
b. 88888 889 889	9388850. 19388585 19388585 19392 19392 19392 193855 19355 193855 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 193555 1935555 1935555 1935555 1935555 1935555 1935555 1935555 19355555 193555555 1935555555555		3803666666 30486663 30486663 30486663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586663 30586653 30586653 30586653 30586553 30586553 30586553 30586553 30586553 30586553 30586553 30586553 30586553 30586553 30586553 30586555 305855555 305855555 305855555 305855555 305855555 305855555	188866884 18866868 18866868 18866868 1888688 1888688 1888688 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 1888688 18886888888 188868888 188868888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888888 188868888 1888688 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 1888888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 1888688 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18886888 18888888 188888888	8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 88888 88888 88888 88888 88888 88888 88888 88888 8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 888	856b. 86836830 86836838 83886308 83886308 83886308 8486838 8686838 8686838 8686838 8686838 8686838 8686838 868638 888638 888638 888638 8888838 888888	b) b8888 b88888 b88888 b8888888 b8888888 b8888888 b888888 b8888888 b88888 b8888 b8888888 b888888 b888888 b888888 b888888 b888888 b8888
Version: Authors:	1.0.0 Joshua Pedro #	Isaacso A. Macha	n, Williar do, Noemi	n Jay, Al Rocco			

ion

Cascade

Why a new generator?

Oscillation Measurements

•
$$P_{\nu_{\mu} \to \nu_{e}} \sim \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \to \Phi_e(E,L)/\Phi_{\mu}(E,0)$$

- Only measure events and not fluxes directly: $N(E_{reco}, L) \propto \sum_{i} \Phi(E, L) \sigma_i(E) f_{\sigma_i}(E, E_{reco})$
- Fit oscillation parameters by taking ratio of number of events in ${\cal E}_{reco}$ bins
- Cross sections do not exactly cancel in ratio, thus they are crucial
- Requires fully differential predictions

Other Measurements

- DUNE and HyperK near detectors are general purpose
- Leverage them for BSM searches
- Requires both SM and BSM fully differential predictions

Introduction

Hard Interactic

Cascad

Why a new generator? $(e4\nu)$

• State of the art is ok for inclusive

• Exclusive results need significant work

[Nature 599, 565–570 (2021)]

Why a new generator? (NOvA)

Source of Uncertainty	$\nu_e \text{ signal } (\%)$	Total beam background (%)
Cross-section and FSI	7.7	8.6
Normalization	3.5	3.4
Calibration	3.2	4.3
Detector response	0.67	2.8
Neutrino flux	0.63	0.43
ν_e extrapolation	0.36	1.2
Total systematic uncertainty	9.2	11
Statistical uncertainty	15	22
Total uncertainty	18	25

Table 1: Effect of 1 or variations of the systematic uncertainties in the total v_e signal and background predictions in the NOvA experiment². The systematic uncertainties are from the latest NOvA results with $8.85x10^{20}$ protons on target.

- Cross section uncertainty one of dominant uncertainties
- Unclear if correctly fully estimated
- NOvA systematics and statistical uncertainty equal
- DUNE and HyperK will have significantly more events

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$\mathrm{d}\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\mathrm{in}} E_\ell^{\mathrm{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$d\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\text{in}} E_\ell^{\text{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{d^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^2 = \left|\sum_{p'} \mathcal{V}(\{k\} \to \{p'\}) \times \mathcal{P}(\{p'\} \to \{p\})\right|^2$$

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$d\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\text{in}} E_\ell^{\text{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{d^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^{2} = \left|\sum_{p' \to p'} \mathcal{V}\left(\{k\} \to \{p'\}\right) \times \mathcal{P}\left(\{p'\} \to \{p\}\right)\right|^{2}$$

Primary interaction —

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$d\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\text{in}} E_\ell^{\text{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{d^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^{2} = \left|\sum_{p'} \mathcal{V}(\{k\} \to \{p'\}) \times \mathcal{P}(\{p'\} \to \{p\})\right|^{2}$$

- Primary interaction
- Evolution out of nucleus _____

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$d\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\text{in}} E_\ell^{\text{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{d^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically Approximation

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^2 = \sum_{p'} \left|\mathcal{V}(\{k\} \to \{p'\})\right|^2 \times \left|\mathcal{P}(\{p'\} \to \{p\})\right|^2$$

- Primary interaction
- Evolution out of nucleus
- Approximate as incoherent product of primary interaction and cascade

Hard Interaction

Cascade

Factorization

- For Quasielastic scattering, factorize primary interaction as: $|\Psi_f\rangle = |p\rangle \otimes |\Psi_f^{A-1}\rangle$
- Initial state given via spectral function (probability distribution of removing a "hole" nucleon):

$$S_h(\mathbf{k}_h, E') = \sum_{f_{A-1}} |\langle \Psi_0 | k \rangle \otimes |\Psi_f^{A-1}\rangle|^2 \delta(E' + E_0^A - E_f^{A-1})$$

- Here we use spectral function obtained from correlated basis function theory [Phys. A 579, 493 (1994)]
- Spectral function normalized as:

$$\int \frac{\mathrm{d}k_h}{(2\pi)^3} \mathrm{d}E' S_h(\mathbf{k}_h, E') = \begin{cases} Z, & h = \mathrm{p}, \\ A - Z, & h = \mathrm{n}. \end{cases}$$

[Rev. Mod. Phys. 80, 189 (2008)]

J

BSM Motivation: MiniBooNE and MicroBooNE

[arXiv:2110.14054]

- MiniBooNE sees excess of events
- MicroBooNE does not see excess of single electron events
- Excess can be from multiple lepton final states
- Event generators can not simulate these processes

Using Currents

Using tensors:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \sum_{i,j} L^{(ij)}_{\mu\nu} W^{(ij)\mu\nu} = L^{(\gamma\gamma)}_{\mu\nu} W^{(\gamma\gamma)\mu\nu} + L^{(\gamma Z)}_{\mu\nu} W^{(\gamma Z)\mu\nu} + L^{(Z\gamma)}_{\mu\nu} W^{(Z\gamma)\mu\nu} + L^{(ZZ)}_{\mu\nu} W^{(ZZ)\mu\nu} + \cdots$$

Using Currents:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left|\sum_i L^{(i)}_{\mu} W^{(i)\mu}\right|^2$$

Interferences handled automatically using currents

Interface to tensors provided for nuclear calculations that **must** be expressed using tensors.

Hard Interaction

Cascad

Handling Form Factors

Nuclear one-body current operators:

$$\begin{aligned} \mathcal{J}^{\mu} &= \left(\mathcal{J}^{\mu}_{V} + \mathcal{J}^{\mu}_{A}\right) \\ \mathcal{J}^{\mu}_{V} &= \gamma^{\mu} \mathcal{F}^{a}_{1} + i \sigma^{\mu\nu} q_{\nu} \frac{\mathcal{F}^{a}_{2}}{2M} \\ \mathcal{J}^{\mu}_{A} &= -\gamma^{\mu} \gamma_{5} \mathcal{F}^{a}_{A} - q^{\mu} \gamma_{5} \frac{\mathcal{F}^{a}_{P}}{M} \end{aligned}$$

Coherent Form Factors (spin-0 nucleus):

$$\mathcal{J}^{\mu} = (p_{\mathsf{in}} + p_{\mathsf{out}})^{\mu} \mathcal{F}_{\mathsf{coh}}$$

Standard Model Form Factors:

$$\begin{aligned} \mathcal{F}_{i}^{\gamma(p,n)} &= F_{i}^{p,n}, \qquad \mathcal{F}_{A}^{\gamma} = 0\\ \mathcal{F}_{i}^{W(p,n)} &= F_{i}^{p} - F_{i}^{n}, \qquad \mathcal{F}_{A}^{W} = F_{A}\\ \mathcal{F}_{i}^{Z(p)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{p} - \frac{1}{2}F_{i}^{n},\\ \mathcal{F}_{i}^{Z(n)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{n} - \frac{1}{2}F_{i}^{p}\\ \mathcal{F}_{A}^{Z(p)} &= \frac{1}{2}F_{A}, \qquad \mathcal{F}_{A}^{Z(n)} = -\frac{1}{2}F_{A}\end{aligned}$$

Hard Interaction

Cascad

Handling Form Factors

Nuclear one-body current operators:

$$\begin{aligned} \mathcal{J}^{\mu} &= \left(\mathcal{J}^{\mu}_{V} + \mathcal{J}^{\mu}_{A}\right) \\ \mathcal{J}^{\mu}_{V} &= \gamma^{\mu} \mathcal{F}^{a}_{1} + i \sigma^{\mu\nu} q_{\nu} \frac{\mathcal{F}^{a}_{2}}{2M} \\ \mathcal{J}^{\mu}_{A} &= -\gamma^{\mu} \gamma_{5} \mathcal{F}^{a}_{A} - q^{\mu} \gamma_{5} \frac{\mathcal{F}^{a}_{P}}{M} \end{aligned}$$

Coherent Form Factors (spin-0 nucleus):

$$\mathcal{J}^{\mu} = (p_{\mathsf{in}} + p_{\mathsf{out}})^{\mu} \mathcal{F}_{\mathsf{coh}}$$

Standard Model Form Factors:

$$\begin{aligned} \mathcal{F}_{i}^{\gamma(p,n)} &= F_{i}^{p,n}, \qquad \mathcal{F}_{A}^{\gamma} = 0\\ \mathcal{F}_{i}^{W(p,n)} &= F_{i}^{p} - F_{i}^{n}, \qquad \mathcal{F}_{A}^{W} = F_{A}\\ \mathcal{F}_{i}^{Z(p)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{p} - \frac{1}{2}F_{i}^{n},\\ \mathcal{F}_{i}^{Z(n)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{n} - \frac{1}{2}F_{i}^{p}\\ \mathcal{F}_{A}^{Z(p)} &= \frac{1}{2}F_{A}, \qquad \mathcal{F}_{A}^{Z(n)} = -\frac{1}{2}F_{A}\end{aligned}$$

Straight-forward to extend to BSM if CVC is valid

Conclusions

Recursive Matrix Element Generation

$$\mathcal{J}_{\alpha}(\pi) = P_{\alpha}(\pi) \sum_{\mathcal{V}_{\alpha}^{\alpha_{1},\alpha_{2}}} \sum_{\mathcal{P}_{2}(\pi)} \mathcal{S}(\pi_{1},\pi_{2}) V_{\alpha}^{\alpha_{1},\alpha_{2}}(\pi_{1},\pi_{2}) \mathcal{J}_{\alpha_{1}}(\pi_{1}) \mathcal{J}_{\alpha_{2}}(\pi_{2})$$

$$L^{(i)}_{\mu\nu}(1,\ldots,m) = \mathcal{J}^{(i)}_{\mu}(1,\ldots,m)$$
$$L^{(i,j)}_{\mu\nu}(1,\ldots,m) = \mathcal{J}^{(i)}_{\mu}(1,\ldots,m) \mathcal{J}^{(j)\dagger}_{\nu}(1,\ldots,m)$$

Berends-Giele Recursion

- Reuse parts of calculation
- Most efficient for high multiplicity
- Reduces computation from $\mathcal{O}\left(n!\right)$ to $\mathcal{O}\left(3^{n}\right)$

[Nucl. Phys. B306(1988), 759]

Cascac

Phase Space Generation

$$d\Phi_n(a,b;1,\ldots,n) = \delta^{(4)} \left(p_a + p_b - \sum_{i=1}^n p_i \right) \left[\prod_{i=1}^n \frac{d^4 p_i}{(2\pi)^3} \delta\left(p_i^2 - m_i^2 \right) \Theta\left(p_{i_0} \right) \right]$$

The above phase space definition does not contain the handling of initial states.

Algorithms for n-body phase space generation

- RAMBO [Comput. Phys. Commun. 40(1986) 359]
- Multi-channel techniques [hep-ph/9405257]
 - Recursive Phase Space [arXiv:0808.3674]

Introduction	Hard Interaction	Cascade	Conclusions	
Results				
Processes Consid	lered:	Parameters:		
 Electron-Ca 	arbon Scattering	• Only quasielastic scatte	ering (coherent for	
Neutrino-Ca	arbon Scattering	HNL) is included and n	io FSI	
• Neutrino Tridents		 EM Form Factors: Kelly [PRC 70, 068202 (2004)] Coherent Form Factor: Lovato [1305.6959] 		
 Dirac/Majorana Heavy Neutral Lepton [1807.09877] 				
Experimental Setup:		• Axial Form Factor:		
• Target Nuc	leus: Carbon (Argon for HNL)	• Dipole • $M_A = 1.0$ GeV		
Electron: 9	61 MeV and 1299 MeV	• $g_A = 1.2694$		
• Neutrino: 1000 MeV		• $\alpha = 1/137$		
 Validating beam fluxes 		• $G_F = 1.16637 \times 10^{-5}$		
NOTE: All processes are fully differential		• $M_Z = 91.1876 \text{ GeV}$		

Introduction

Hard Interaction

Cascade

Electron Scattering

Neutrino Total Cross Section

Neutrino Differential Cross Section

Heavy Neutral Lepton

Parameters:

- $m_{N'} = 420 \text{ MeV}$
- $m_{Z'} = 30 \text{ MeV}$

•
$$\alpha_D = 0.25$$

•
$$\alpha \epsilon^2 = 2 \times 10^{-10}$$

•
$$|U_{42}^{\mu}| = 9 \times 10^{-7}$$

- Widths of N^\prime and Z^\prime automatically calculated based on input parameters
- Handles both Dirac and Majorana fermions
- Results are flux-averaged over the MiniBooNE / MicroBooNE neutrino flux

Heavy Neutral Lepton

Heavy Neutral Lepton

- No cuts applied yet
- Typical opening angle around 5-6 degrees
- Working on scanning parameter space

- Need to include background to compare to MiniBooNE data
- Simulate possible MicroBooNE limits

Conclusions

MicroBooNE Simulation

Image generated by the MicroBooNE collaboration using Achilles

- Working on implementing into MicroBooNE Pipeline
- Developing interface to LArSoft

Final State Interactions

Modify Primary Interaction:

- Captures rate change from FSI
- Loses all information about hadronic final state
- Primarily done using folding functions

Intranuclear Cascade:

- Unitary process (*i.e.* no rate change)
- Contains information about hadronic final state
- Primarily done via Monte Carlo methods

Note: Both approaches attempt to capture effects from nuclear potential. Therefore, can only use one or the other to avoid double counting effects.

Hard Interaction

Cascade

Final State Interactions

Modify Primary Interaction:

- Captures rate change from FSI
- Loses all information about hadronic final state
- Primarily done using folding functions

Intranuclear Cascade:

- Unitary process (*i.e.* no rate change)
- Contains information about hadronic final state
- Primarily done via Monte Carlo methods

Note: Both approaches attempt to capture effects from nuclear potential. Therefore, can only use one or the other to avoid double counting effects.

Matrix Element Schematically Approximation

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^{2} = \sum_{p'} \left|\mathcal{V}(\{k\} \to \{p'\})\right|^{2} \times \left|\mathcal{P}(\{p'\} \to \{p\})\right|^{2}$$

Algorithm Overview

Propagation with Potential

Initial Momentum: 250 MeV

• Blue: Non-relativistic potential ($E = \sqrt{p^2 + m^2} + V$)

[Phys. Rev. C. 38, 2967]

- Propagation using symplectic integrator for non-separable Hamiltonians [1609.02212]
- Energy is conserved to a high degree of precision
- Extremely stable

• Red: Relativistic potential ($E = \sqrt{p^2 + (m+S)^2} + V$)

[Phys. Rev. C. 80, 034605]

Hard Interaction

Cascade

Propagation with Potential

• Blue: Non-relativistic potential $(E = \sqrt{p^2 + m^2} + V)$

[Phys. Rev. C. 38, 2967]

- Propagation using symplectic integrator for non-separable Hamiltonians [1609.02212]
- Energy is conserved to a high degree of precision
- Extremely stable

• Red: Relativistic potential ($E = \sqrt{p^2 + (m+S)^2} + V$)

[[]Phys. Rev. C. 80, 034605]

CLAS/e4v Comparison

CLAS/e4v cuts:

- Select $1p0\pi$ events
- Protons: $p_p > 300$ MeV, $12^{\circ} < \theta_p$.
- electrons: $E_e > 0.4, 0.55, 1.1 \text{ GeV}$, $\theta_e^i > \theta_0^i + \frac{\theta_1^i}{p_e[\text{GeV}]}, \ \theta_0^i = 17^\circ, 16^\circ, 13.5^\circ$, $\theta_1^i = 7^\circ, 10.5^\circ, 15^\circ \text{ for}$ $E_{\text{beam}} = 1.159, 2.257, 4.453 \text{ GeV}$ respectively.

Simulation details:

- ACHILLES only has Quasielastic channel so far
- Events are reweighted by Q^4/GeV^4 (as done in the analysis)

CLAS/e4v Comparison

• Mimics Cherenkov detectors

• Mimics LArTPC detectors

CLAS/e4v Comparison

$$\mathbf{p}^T = \mathbf{p}_e^T + \mathbf{p}_p^T$$

CLAS/e4v Comparison

$$\mathbf{p}^T = \mathbf{p}_e^T + \mathbf{p}_p^T$$

CLAS/e4v Comparison

$$\mathbf{p}^T = \mathbf{p}_e^T + \mathbf{p}_p^T$$

New Observables

New Observables:

• Momentum of 1st proton

New Observables

New Observables:

- Momentum of 1st proton
- Momentum of 2nd proton

New Observables

New Observables:

- Momentum of 1st proton
- Momentum of 2nd proton
- Momentum of 3rd proton

New Observables

New Observables:

- Momentum of 1st proton
- Momentum of 2nd proton
- Momentum of 3rd proton
- Reconstructed beam direction:

$$\cos \theta_{\rm rec} \equiv \frac{\hat{\mathbf{k}}_e \cdot \mathbf{p}_{\rm out}}{|\mathbf{p}_{\rm out}|}$$

Conclusions

Current Status:

- DUNE and HK will require precision neutrino event generators
- ACHILLES aims to be a modular theory driven generator to address these needs
- BSM important for the current and next generation neutrino experiments
- Robust BSM program requires automating theory calculations
- Comparison of cascade results with CLAS/e4v experiment

Future Steps:

- Implement QED showers to handle radiative corrections
- Interface with LArSoft
- Implement MEC, Resonance, and DIS processes
- Continue to improve cascade modeling

FeynRules

- Mathematica Program
- Takes model file and Lagrangian as input
- Calculates the Feynman rules
- Outputs in Universal FeynRules Output (UFO) format

[arXiv:0806.4194, arXiv:1310.1921]

Universal FeynRules Output (UFO)

Example QED ($e^+e^-\gamma$ Vertex):

- Python output files
- Contains model-independent files and model-dependent files
- Contains all information to calculate any tree level matrix element
- Has parameter file to adjust model parameters to scan allowed regions

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \left(i D^{\mu} \gamma_{\mu} - m \right) \psi$$

$$V_{e^+e^-\gamma} = ie\gamma^\mu = \gamma \checkmark$$

[arXiv:1108.2040]

Universal FeynRules Output (UFO) Example for photon-electron vertex

```
e minus = Particle(pdg code=11, name='e-', antiname='e+',
                      spin=2, color=1, mass=Param.ZERO,
                      width=Param.ZERO, texname='e-',
                      antitexname='e+', charge=-1,
                      GhostNumber=0, LeptonNumber=1,
                      Y=0)
V 77 = Vertex(name='V 77')
              particles=[ P.e plus , P.e minus , P.a ],
              color=[ '1' ], lorentz=[ L.FFV1 ],
              couplings = \{(0,0): C, GC \}
FFV1 = Lorentz(name='FFV1', spins=[ 2, 2, 3 ],
               structure = 'Gamma(3,2,1)')
GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))'.
                order={'QED':1})
```

Tree Level Matrix Element Generators

- ALPGEN [arXiv:hep-ph/0206293]
- AMEGIC [arXiv:hep-ph/0109036]
- COMIX [arXiv:0808.3674]
- CALCHEP [arXiv:1207.6082]
- HERWIG [arXiv:0803.0883]
- MADGRAPH [arXiv:1405.0301]
- WHIZARD [arXiv:0708.4233]
- etc.

[arXiv:1702.05725]

Tree Level Matrix Element Generators

- ALPGEN [arXiv:hep-ph/0206293]
- AMEGIC [arXiv:hep-ph/0109036]
- COMIX [arXiv:0808.3674]
- CALCHEP [arXiv:1207.6082]
- HERWIG [arXiv:0803.0883]
- MADGRAPH [arXiv:1405.0301]
- WHIZARD [arXiv:0708.4233]
- etc.

[arXiv:1702.05725]

 $\mathrm{d}\sigma \propto \mathrm{d}\Phi_2(a,b;1,2) \ \mathrm{d}^4 p_a \ \mathrm{d}^3 p_b$

5 / 11

• Phase space:
$$d\Phi_2(a,b;1,2) = \frac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}} d\cos\theta_1 d\phi_1$$

$$\mathrm{d}\sigma \propto \ \mathrm{d}\Phi_2(a,b;1,2) \ \mathrm{d}^4p_a \ \mathrm{d}^3p_b$$

• Phase space:
$$\mathrm{d}\Phi_2(a,b;1,2) = \frac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}} \mathrm{d}\cos\theta_1 \mathrm{d}\phi_1$$

• Initial nucleon:
$$d^4p_a = |\vec{p}_a|^2 dp_a dE_r d\cos\theta_a d\phi_a \sqrt{1-1}$$

$$\mathrm{d}\sigma \propto \mathrm{d}\Phi_2(a,b;1,2) \ \mathrm{d}^4 p_a \ \mathrm{d}^3 p_b$$

• Phase space:
$$\mathrm{d}\Phi_2(a,b;1,2) = rac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}}\mathrm{d}\cos heta_1\mathrm{d}\phi_1$$

• Initial nucleon:
$$d^4p_a = |\vec{p_a}|^2 dp_a dE_r d\cos\theta_a d\phi_a$$

• Initial lepton (Here only monochromatic): $d^3p_b = \delta^3(p_b - p_{beam})d^3p_b$

 $\mathrm{d}\sigma \propto \mathrm{d}\Phi_2(a,b;1,2) \,\mathrm{d}^4 p_a \,\mathrm{d}^3 p_b$

• Phase space:
$$\mathrm{d}\Phi_2(a,b;1,2) = rac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}}\mathrm{d}\cos heta_1\mathrm{d}\phi_1$$

• Initial nucleon: $d^4p_a = |\vec{p_a}|^2 dp_a dE_r d\cos\theta_a d\phi_a$

• Initial lepton (Here only monochromatic): $d^3p_b = \delta^3(p_b - p_{beam})d^3p_b$

Quasielastic Delta Function: $\delta(E_b - E_1 - E_r + m - E_2)$ Phase Space Delta Function: $\delta(E_a + E_b - E_1 - E_2)$ Define initial nucleon energy as $E_a = m - E_r$. Allows use of phase space tools developed at LHC.

Multi-channel Integration

- Both diagrams contribute to cross section
- They have different pole structures
- Need method to sample these structures efficiently (i.e. $|A_1 + A_2|^2$)

Multi-channel Integration and VEGAS

Multi-channel Integration

- Generate PS efficiently for $|\mathcal{A}_1|^2$ or $|\mathcal{A}_2|^2$
- Do not know how to efficiently sample $2Re(\mathcal{A}_1\mathcal{A}_2^\dagger)$
- Define channels: C_1 and C_2
- Generate events according to distributions g_i for channel i

$$\int d\vec{x} f(\vec{x}) = \sum_{i} \alpha_{i} \int d\vec{x} g_{i}(\vec{x}) \frac{f(\vec{x})}{g_{i}(\vec{x})}$$

• Optimize α_i to minimize variance

VEGAS

- Adaptive importance sampling
- Use this to get interference terms more accurately

Phase space can be decomposed as:

$$\mathrm{d}\Phi_n(a,b;1,\ldots,n) = \mathrm{d}\Phi_{n-m+1}(a,b;m+1,\ldots,n)\frac{\mathrm{d}s_\pi}{2\pi}\mathrm{d}\Phi_m(\pi;1,\ldots,m)$$

Iterate until only $1 \rightarrow 2$ phase spaces remain. Basic building blocks:

$$S_{\pi}^{\rho,\pi\setminus\rho} = \frac{\lambda(s_{\pi}, s_{\rho}, s_{\pi\setminus\rho})}{16\pi^2 2 s_{\pi}} \operatorname{d}\cos\theta_{\rho} \operatorname{d}\phi_{\rho}$$
$$T_{\alpha,b}^{\pi,\overline{\alpha}b\overline{n}} = \frac{\lambda(s_{\alpha b}, s_{\pi}, s_{\overline{\alpha}b\overline{n}})}{16\pi^2 2 s_{\alpha b}} \operatorname{d}\cos\theta_{\pi} \operatorname{d}\phi_{\pi}$$

Momentum conservation: $(2\pi)^4 d^4 p_{\overline{\alpha b}} \delta^{(4)}(p_{\alpha} + p_b - p_{\overline{\alpha b}})$

Neutrino Tridents

J. Isaacson

Symplectic Integration for non-separable Hamiltonians

• Create copy of Hamiltonian:

$$\overline{H}(q, p, x, y) \equiv H_A(q, y) + H_B(x, p) + \omega H_C(q, p, x, y)$$
$$H_C(q, p, x, y) = |q - x|^2 / 2 + |p - y|^2 / 2$$

• Time step for each Hamiltonian:

$$\begin{split} \phi_{H_A}^{\delta} &: \begin{bmatrix} q \\ p \\ x \\ y \end{bmatrix} \to \begin{bmatrix} q \\ p - \delta \partial_q H(q, y) \\ x + \delta \partial_y H(q, y) \\ y \end{bmatrix}, \phi_{H_B}^{\delta} &: \begin{bmatrix} q \\ p \\ x \\ y \end{bmatrix} \to \begin{bmatrix} q + \delta \partial_p H(x, p) \\ p \\ x \\ y - \delta \partial_x H(x, p) \end{bmatrix}, \\ \phi_{H_C}^{\delta} &: \begin{bmatrix} q \\ p \\ x \\ y \end{bmatrix} \to \frac{1}{2} \begin{bmatrix} \begin{pmatrix} q + x \\ p + y \end{pmatrix} + R(\delta) \begin{pmatrix} q - x \\ p - y \end{pmatrix} \\ \begin{pmatrix} q + x \\ p + y \end{pmatrix} - R(\delta) \begin{pmatrix} q - x \\ p - y \end{pmatrix} \end{bmatrix}, \end{split}$$

• Full second order time step:

$$\phi_2^{\delta} = \phi_{H_A}^{\delta/2} \circ \phi_{H_B}^{\delta/2} \circ \phi_{\omega H_C}^{\delta} \circ \phi_{H_B}^{\delta/2} \circ \phi_{H_A}^{\delta/2}.$$