

First Dual-Baseline Search for Active to Sterile Neutrino Oscillations from NOvA

V Hewes, for the NOvA Experiment Fermilab JETP seminar January 20th 2022

Overview

Phenomenology of neutrino oscillations

The NOvA experiment

Analysis techniques

Event selections

Systematic uncertainties

Results

•

Three light active flavours of neutrino:

• Electron (v_e), muon (v_μ) and tau (v_τ).

•

Three light active flavours of neutrino:

• Electron (v_e), muon (v_μ) and tau (v_τ).

 LEP experiments' measurement of the width of the Z boson (<u>arXiv:0509008</u>).

Three light active flavours of neutrino:

Electron (v_e), **muon (v_\mu)** and **tau (v_\tau)**.

 LEP experiments' measurement of the width of the Z boson (<u>arXiv:0509008</u>).

Solar neutrino problem

•

•

The Homestake experiment observed a deficit in solar v_e flux.
 (Astrophys.J.496 (1998) 505-526).

Three light active flavours of neutrino:

Electron (v_e), muon (v_μ) and tau (v_τ).

 LEP experiments' measurement of the width of the Z boson (<u>arXiv:0509008</u>).

Solar neutrino problem

•

•

٠

The Homestake experiment observed a deficit in solar v_e flux.
 (Astrophys.J.496 (1998) 505-526).

Neutrino oscillations

 Sudbury Neutrino Observatory resolved this problem with neutrino flavour mixing (arXiv:0204008).

First Dual-Baseline Search for Active to Sterile Neutrino Oscillations fro

• Standard three-flavour oscillations are typically described using six parameters:

- Standard three-flavour oscillations are typically described using six parameters:
 - Two mass splittings: Δm_{21}^2 , Δm_{31}^2 .

- Standard three-flavour oscillations are typically described using six parameters:
 - Two mass splittings: Δm_{21}^2 , Δm_{31}^2 .
 - Three mixing angles: θ₁₂, θ₁₃, θ₂₃.

- Standard three-flavour oscillations are typically described using six parameters:
 - Two mass splittings: Δm_{21}^2 , Δm_{31}^2 .
 - Three mixing angles: θ₁₂, θ₁₃, θ₂₃.
 - One CP-violating phase: δ_{13} (typically called δ_{cp}).

- Standard three-flavour oscillations are typically described using six parameters:
 - Two mass splittings: Δm_{21}^2 , Δm_{31}^2 .
 - Three mixing angles: θ₁₂, θ₁₃, θ₂₃.
 - One CP-violating phase: δ_{13} (typically called δ_{cp}).

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- Standard three-flavour oscillations are typically described using six parameters:
 - Two mass splittings: Δm_{21}^2 , Δm_{31}^2 .
 - Three mixing angles: θ₁₂, θ₁₃, θ₂₃.
 - One CP-violating phase: δ_{13} (typically called δ_{cp}).

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \qquad \Delta m_{31}^{2}$$

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = R(\theta_{12}) R(\theta_{13}, \delta_{13}) R(\theta_{23}) \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \qquad \Delta m_{21}^{2}$$

$$V_{1}$$

- Standard three-flavour oscillations are typically described using six parameters:
 - Two mass splittings: Δm_{21}^2 , Δm_{31}^2 .
 - Three mixing angles: θ₁₂, θ₁₃, θ₂₃.
 - One CP-violating phase: δ_{13} (typically called δ_{cp}).

Oscillation probability depends on the **energy** and **path length** of the neutrino.

$$P_{\alpha\beta} = \left| \delta_{\alpha\beta} - \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right) \right|$$

Experimental low-energy excesses

 The LSND and MiniBooNE experiments observed an excess in neutrino and antineutrino events at the m/MeV range of L/E.

Experimental low-energy excesses

neutrino state, which modifies the mixing of the neutrino mass states to allow anomalous ve appearance.

٠

 10^{-2}

10⁻³

10⁻⁻²

10⁻¹

 $sin^2 2\theta$

 Expand the 3-Flavour model by introducing an additional mass state v₄ and flavour state v_s.

- Expand the 3-Flavour model by introducing an additional mass state v₄ and flavour state v_s.
- LEP's measurement of the Z width means this state must be **sterile**.

- Expand the 3-Flavour model by introducing an additional mass state v₄ and flavour state v_s.
- LEP's measurement of the Z width means this state must be **sterile**.
- It does not couple to the standard model forces, but it does modify the oscillations of the active neutrinos.

- Expand the 3-Flavour model by introducing an additional mass state v₄ and flavour state v_s.
- LEP's measurement of the Z width means this state must be **sterile**.
- It does not couple to the standard model forces, but it does modify the oscillations of the active neutrinos.

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}$$

Experimental landscape

- Many experimental probes of the 3+1 model:
 - Reactor experiments, MINOS+, Super-Kamiokande, T2K, IceCube, MicroBooNE...

arXiv:2106.04673

Experimental landscape

- Many experimental probes of the 3+1 model: •
 - Reactor experiments, MINOS+, Super-• Kamiokande, T2K, IceCube, MicroBooNE...

10

 10^{-1}

10⁻²

 Δm^2_{41} (eV²)

MicroBooNE+MiniBooNE joint fit still prefers a • 3+1 best fit, and excludes 3F at $>3\sigma$.

MicroBooNE 6.369×10²⁰ POT

Data, profiling

---- Sensitivity, profiling

- Sensitivity, v_e App. only

 10^{-1}

95% CL_s

LSND 90% CL (allowed)

SND 99% CL (allowed)

 10^{-2}

 $\sin^2 2\theta_{\mu e}$

10⁻³

 10^{2}

10 **=**

 10^{-1}

 10^{-2}

 10^{-4}

 $\Delta m^2_{41}~(eV^2)$

GALLEX+SAGE+BEST

Neutrino-4 2o (allowed)

MicroBooNE 6.369×10²⁰ POT

Data, profiling

---- Sensitivity, profiling

– Sensitivity, v_e Disapp. only

10⁻¹

 $\sin^2 2\theta_{ee}$

95% CL_s

 2σ (allowed)

Overview

Phenomenology of neutrino oscillations

The NOvA experiment

Analysis techniques

Event selections

Systematic uncertainties

Analysis techniques

Results

The NOvA Experiment

- NOvA is a long-baseline accelerator experiment based at Fermilab.
- Measures neutrinos from Fermilab's NuMI beam.
- Functionally equivalent near and far detectors.
 - Liquid scintillator sampling tracking calorimeter.
 - Both detectors are **14 mrad off-axis**.
 - ND: 1km baseline, FNAL, 300 tons.
 - FD: 810km baseline, on-surface at Ash River, 14 kt.

- Charged particles produce light when propagating through scintillator.
- Picked up by wavelengthshifting fibers (right) and amplified by avalanche photodiodes (left).

NuMI Beam

- Protons accelerated at Fermilab's Main Injector.
- These protons are incident on a target, and interact to produce **pions** and **kaons**.
- $\pi \& \kappa$ focused using magnetic horns.
- Focused π & κ decay in flight to neutrinos.

NuMI Beam

- NOvA uses the Neutrinos at the Main Injector (NuMI) beamline.
- This analysis utilises the **neutrino dataset** only.
 - 11.0×10^{20} Protons on Target in the near detector.
 - 13.6×10^{20} Protons on Target equivalent in the far detector.

 Probe 3+1 sterile oscillations in NOvA through neutral current disappearance.

- Probe 3+1 sterile oscillations in NOvA through neutral current disappearance.
- NC interactions are flavourindependent, providing a clean measurement of active → sterile disappearance.

- Probe 3+1 sterile oscillations in NOvA through neutral current disappearance.
- NC interactions are flavourindependent, providing a clean measurement of active → sterile disappearance.

- Probe 3+1 sterile oscillations in NOvA through neutral current disappearance.
- NC interactions are flavourindependent, providing a clean measurement of active → sterile disappearance.

- Probe 3+1 sterile oscillations in NOvA through neutral current disappearance.
- NC interactions are flavourindependent, providing a clean measurement of active → sterile disappearance.

$$1 - P(\nu_{\mu} \rightarrow \nu_{s}) \approx 1 - \cos^{4} \theta_{14} \cos^{2} \theta_{34} \sin^{2} 2\theta_{24} \sin^{2} \Delta_{41}$$

$$- \sin^{2} \theta_{34} \sin^{2} 2\theta_{23} \sin^{2} \Delta_{31}$$

$$+ \frac{1}{2} \sin \delta_{24} \sin \theta_{24} \sin 2\theta_{23} \sin \Delta_{31}$$

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^{2} L}{4E}$$

Terms in yellow only appear in far detector, due to interplay with 3f oscillations.

- Neutrino Energy (GeV) Neutrino Energy (GeV) Probe 3+1 sterile oscillations 10^{2} 10^{2} 10 10 1.2 in NOvA through **neutral** ND FD current disappearance. 0.8 $\nu_{\mu} \rightarrow \nu_{s}$ Neutrino Mode 0.6 NC interactions are flavour- 3-Flavor Prob. independent, providing a Far detector neutral current sample has clean measurement of sensitivity to θ_{34} independent of θ_{24} . active \rightarrow sterile disappearance. 10⁻² 10⁻¹ 1 10 L/E (km/GeV) 10^{2} $1 - P(\nu_{\mu} \rightarrow \nu_{s}) \approx 1 - \cos^{4}\theta_{14}\cos^{2}\theta_{34}\sin^{2}2\theta_{24}\sin^{2}\Delta_{41}$ $-\frac{\sin^2 \theta_{34}}{+\frac{1}{2}} \sin^2 2\theta_{23} \sin^2 \Delta_{31}$
 - $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{\Lambda E}$

10³

Terms in yellow only appear in far detector, due to interplay with 3f oscillations.

First Dual-Baseline Search for Active to Sterile Neutrino Oscillations from NOvA – V Hewes – Fermilab JETP seminar

- 8.0 Events (Arbitrary Scale)

 Probe 3+1 sterile oscillations in NOvA through charged current v_µ disappearance.

- Probe 3+1 sterile oscillations in NOvA through charged current v_µ disappearance.
- Sterile neutrinos manifest as additional v_µ disappearance, above that expected from standard 3-flavour oscillations.

$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$

- Probe 3+1 sterile oscillations in NOvA through charged current v_µ disappearance.
- Sterile neutrinos manifest as additional v_µ disappearance, above that expected from standard 3-flavour oscillations.

$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$

- Probe 3+1 sterile oscillations in NOvA through charged current v_µ disappearance.
- Sterile neutrinos manifest as additional v_µ disappearance, above that expected from standard 3-flavour oscillations.

$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$

- Probe 3+1 sterile oscillations in NOvA through charged current v_µ disappearance.
- Sterile neutrinos manifest as additional v_µ disappearance, above that expected from standard 3-flavour oscillations.

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{24} \sin^2 \Delta_{41}$$

+ 2 \sin^2 2\theta_{23} \sin^2 \theta_{24} \sin^2 \Delta_{31} \theta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E} \text{} \text{}

Terms in yellow only appear in far detector, due to interplay with 3f oscillations.
3+1 oscillations at NOvA: v_µ Charged Currents

Neutrino Energy (GeV) Neutrino Energy (GeV) Probe 3+1 sterile oscillations 10^{2} 10^{2} 10 10 1.2 in NOvA through charged FD ND current v_{μ} disappearance. 0.8 (ⁿ/_μ) Neutrino Mode 0.6 Sterile neutrinos manifest as 3-Flavor Prob. additional v_{μ} disappearance, Charged current v_µ samples are above that expected from sensitive to θ_{24} in both detectors. standard 3-flavour oscillations. 0-2 10⁻¹ 10^{3} 10² 1 10 L/E (km/GeV) $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - (\sin^2 2\theta_{24}) \sin^2 \Delta_{41}$ $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{\Lambda E}$ $+2\sin^2 2\theta_{23}\sin^2 \theta_{24}\sin^2 \Delta_{31}$ $-\sin^2 2\theta_{23}\sin^2 \Delta_{31}$

Terms in yellow only appear in far detector, due to interplay with 3f oscillations.

University of CINCINNATI

Overview

Phenomenology of neutrino oscillations The NOvA experiment Analysis techniques Event selections Systematic uncertainties

Results

Phys.Rev.D 96 (2017) 7, 072006

 Previous NOvA 3+1 searches used a near-to-far ratio approach for cancelling systematic uncertainties.

- Previous NOvA 3+1 searches used a near-to-far ratio approach for cancelling systematic uncertainties.
- This approach uses the near detector to constrain systematic uncertainties.

- Previous NOvA 3+1 searches used a near-to-far ratio approach for cancelling systematic uncertainties.
- This approach uses the near detector to constrain systematic uncertainties.
- Analyses are limited to the 0.05 < Δm_{41}^2 < 0.5 eV² region of phase space.

- Previous NOvA 3+1 searches used a near-to-far ratio approach for cancelling systematic uncertainties.
- This approach uses the near detector to constrain systematic uncertainties.
- Analyses are limited to the 0.05 < Δm_{41}^2 < 0.5 eV² region of phase space.
 - No sterile oscillations in the near detector.

- Previous NOvA 3+1 searches used a near-to-far ratio approach for cancelling systematic uncertainties.
- This approach uses the near detector to constrain systematic uncertainties.
- Analyses are limited to the 0.05 < Δm_{41}^2 < 0.5 eV² region of phase space.
 - No sterile oscillations in the near detector.
 - Rapid oscillations averaging to a normalisation shift in the far detector.

Phys. Rev. Lett. 127, 201801

Neutral current

Far detector

Normalisation shift at $\Delta m_{41^2} > 0.05 \text{ eV}^2$.

Sensitive to θ_{24} and θ_{34} .

Independent sensitivity to θ_{34} .

The far detector neutral current selection

is the only sample considered by previous NOvA sterile analyses.

Neutral current

Far detector

Normalisation shift at $\Delta m_{41^2} > 0.05 \text{ eV}^2$.

Sensitive to θ_{24} and θ_{34} .

Independent sensitivity to θ_{34} .

Moving to a **two-detector fit** approach allows for **cancellation of systematic uncertainties** while being **sensitive to oscillations in either detector**.

Near detector

Neutral current

Near detector oscillations manifest at $\Delta m_{41}^2 > 0.5 \text{ eV}^2$.

Sensitive to θ_{24} and θ_{34} .

Far detector

Normalisation shift at $\Delta m_{41^2} > 0.05 \text{ eV}^2$.

Sensitive to θ_{24} and θ_{34} .

Independent sensitivity to θ_{34} .

Fitting in the near detector allows us to **probe two different** regions of L/E simultaneously.

Near detector **Far detector** Normalisation shift at $\Delta m_{41^2} > 0.05 \text{ eV}^2$. Near detector oscillations Neutral manifest at $\Delta m_{41}^2 > 0.5 \text{ eV}^2$. Sensitive to θ_{24} and θ_{34} . current Sensitive to θ_{24} and θ_{34} . Independent sensitivity to θ_{34} . Charged Near detector oscillations Normalisation shift manifest at $\Delta m_{41^2} > 0.5 \text{ eV}^2$. at $\Delta m_{41^2} > 0.05 \text{ eV}^2$. current Sensitive to θ_{24} . Sensitive to θ_{24} . Vμ

Analysis approaches

CMF (Covariance Matrix Fit)

- Event-by-event fit framework for calculating exact oscillation probabilities.
- Use standard Gaussian multivariate χ^2 with Combined Neyman-Pearson statistical uncertainties.

$$\chi_{CNP}^{2} = \sum_{i} \frac{(N_{i}^{CV} - N_{i}^{data})^{2}}{3/\left(\frac{1}{N_{i}^{data}} + \frac{2}{N_{i}^{CV}}\right)} \qquad \chi^{2} = \sum_{i,j} \left[N_{i}^{data} - N_{i}^{model}(\Theta)\right] \times C_{ij}^{-1} \times \left[N_{j}^{data} - N_{j}^{model}(\Theta)\right]$$

arXiv:1903.07185

Analysis approaches

CMF (Covariance Matrix Fit)

- Event-by-event fit framework for calculating exact oscillation probabilities.
- Use standard Gaussian multivariate χ^2 with Combined Neyman-Pearson statistical uncertainties.

$$\chi_{CNP}^{2} = \sum_{i} \frac{(N_{i}^{CV} - N_{i}^{data})^{2}}{3/\left(\frac{1}{N_{i}^{data}} + \frac{2}{N_{i}^{CV}}\right)} \qquad \chi^{2} = \sum_{i,j} \left[N_{i}^{data} - N_{i}^{model}(\Theta)\right] \times C_{ij}^{-1} \times \left[N_{j}^{data} - N_{j}^{model}(\Theta)\right]$$

arXiv:1903.07185

PISCES (Parameter Inference with Systematic Covariance and Exact Statistics)

- Use covariance matrix to efficiently solve for systematic pulls.
- Exact statistical treatment of statistical uncertainties with Poisson likelihood.

$$\chi^2 = 2\sum_{i}^{N} \left[\left(\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i} \right) - x_i + x_i \log \left(\frac{x_i}{\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i}} \right) \right] + \sum_{ij}^{N} \sum_{\alpha \beta}^{M} (s_{\alpha i} - 1) F_{\alpha i \beta j} (s_{\beta j} - 1)$$

Overview

Phenomenology of neutrino oscillations The NOvA experiment Analysis techniques Event selections Systematic uncertainties

Results

 Charged Current v_µ and Neutral Current events are selected using the following criteria:

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment
 - Cosmic background rejection

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment
 - Cosmic background rejection
 - Neutrino flavour identification

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment
 - Cosmic background rejection
 - Neutrino flavour identification

•

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment
 - Cosmic background rejection
 - Neutrino flavour identification

•

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment
 - Cosmic background rejection
 - Neutrino flavour identification

- Charged Current v_µ and Neutral Current events are selected using the following criteria:
 - Event quality
 - Containment
 - Cosmic background rejection
 - Neutrino flavour identification

Overview

Phenomenology of neutrino oscillations The NOvA experiment Analysis techniques Event selections Systematic uncertainties

Results

 Comprehensive suite of systematic uncertainties considered:

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections
 - Detector response

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections
 - Detector response
 - Normalisation

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections
 - Detector response
 - Normalisation
 - ...and more!

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections
 - Detector response
 - Normalisation
 - ...and more!
- Some uncertainties require special treatment in this new analysis approach.

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections
 - Detector response
 - Normalisation
 - ...and more!
- Some uncertainties require special treatment in this new analysis approach.

Kaon Ancestors

- Neutral current samples select neutrinos with true energies > 20 GeV.
- Significant population of kaon ancestors.
- Constrain with horn-off data to **5%**.

- Comprehensive suite of systematic uncertainties considered:
 - Beam flux (hadron production & beam transport)
 - Cross-sections
 - Detector response
 - Normalisation
 - ...and more!
- Some uncertainties require special treatment in this new analysis approach.

2p2h events

- Cannot use standard NOvA cross-section reweight due to potential signal in ND.
- Instead of correcting central value, introduce new MEC model spread uncertainties.

Overview

Phenomenology of neutrino oscillations The NOvA experiment Analysis techniques Event selections Systematic uncertainties

Results

Results

Results

Results

Results

$\sin^2 heta_{24}$ vs Δm^2_{41} limits

- Profile **θ**₂₃, **Δm**₃₂², **θ**₃₄ and **δ**₂₄.
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - **θ₁₄** fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).

$\sin^2 heta_{24}$ vs Δm^2_{41} limits

- Profile **θ**₂₃, **Δm**₃₂², **θ**₃₄ and **δ**₂₄.
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - **θ₁₄** fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).

$\sin^2 heta_{24}$ vs Δm^2_{41} limits

- Profile **θ**₂₃, **Δm**₃₂², **θ**₃₄ and **δ**₂₄.
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - **θ**₁₄ fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).
- Competitive limits on θ_{24} in high Δm_{41}^2 regime.

$\sin^2 heta_{34}$ vs Δm^2_{41} limits

- Profile θ_{23} , Δm_{32}^2 , θ_{24} and δ_{24} .
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - **θ₁₄** fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).

$\sin^2 heta_{34}$ vs Δm^2_{41} limits

- Profile **θ**₂₃, **Δm**₃₂², **θ**₂₄ and **δ**₂₄.
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - **θ₁₄** fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).
- World-leading limits in θ_{34} as a function of Δm_{41}^2 .

$$\sin^2 2\theta_{\mu\tau}$$

• Short-baseline effective parameterisation:

$$P_{\alpha\beta}^{(SBL)} \approx \left| \delta_{\alpha\beta} - \sin^2 2\theta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right) \right|$$
$$\sin^2 2\theta_{\alpha\beta} = 4|U_{\alpha4}|^2|\delta_{\alpha\beta} - |U_{\beta4}|^2|$$
$$\sin^2 2\theta_{\mu\tau} = 4|U_{\mu4}|^2|U_{\tau4}|^2 = \sin^2 2\theta_{24} \sin^2 \theta_{34}$$

• When constructing sin²2 $\theta_{\mu\tau}$ surfaces, profile over an effective parameter $\theta_{\mu\tau}^{\text{prof}}$ that controls the relative contribution of θ_{24} and θ_{34} to the product.

$\sin^2 2 heta_{\mu au}$ vs Δm^2_{41} limits

- Profile θ_{23} , Δm_{32}^2 , $\theta_{\mu\tau}^{prof}$ and δ_{24} .
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - **θ₁₄** fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).

•

$\sin^2 2 heta_{\mu au}$ vs Δm^2_{41} limits

- Profile θ_{23} , Δm_{32}^2 , $\theta_{\mu\tau}^{prof}$ and δ_{24} .
 - Other 3f PMNS parameters held fixed at recent NuFit values.
 - θ₁₄ fixed at zero due to constraints from reactor data.
 - Loose Gaussian constraint applied to Δm₃₂².
- 90% CL critical values corrected using Profiled Feldman Cousins approach (<u>arXiv:2207.14353</u>).
- World-leading limits on $\theta_{\mu\tau}$ in low Δm_{41}^2 regime.

•

• Much scope for expanding two-detector fit mechanism in future:

- Much scope for expanding two-detector fit mechanism in future:
 - Constraining oscillations:

- Much scope for expanding two-detector fit mechanism in future:
 - Constraining oscillations:
 - Introduce antineutrino dataset.

- Much scope for expanding two-detector fit mechanism in future:
 - Constraining oscillations:
 - Introduce antineutrino dataset.
 - Expand to include v_e selection.

- Much scope for expanding two-detector fit mechanism in future:
 - Constraining oscillations:
 - Introduce antineutrino dataset.
 - Expand to include v_e selection.
 - Constraining systematics:

- Much scope for expanding two-detector fit mechanism in future:
 - Constraining oscillations:
 - Introduce antineutrino dataset.
 - Expand to include v_e selection.
 - Constraining systematics:
 - Horn-off samples in fit for in-situ constraint on kaon flux.

- Much scope for expanding two-detector fit mechanism in future:
 - Constraining oscillations:
 - Introduce antineutrino dataset.
 - Expand to include v_e selection.
 - Constraining systematics:
 - Horn-off samples in fit for in-situ constraint on kaon flux.
 - Incorporate control samples used for extrapolation analysis into fit directly.

Summary

- Searched for evidence of neutrinos oscillating from an active to sterile state in both NOvA detectors.
- No evidence of sterile neutrino oscillations found at 90% confidence level.
- First exclusion contour in $\sin^2\theta_{34}$ vs Δm_{41}^2 space.
- World-leading sensitivity in $\sin^2 2\theta_{\mu\tau}$ at low Δm_{41}^2 .
- Strong potential for future searches with improved sensitivity.

Backups

Neutrinos are produced in a definite flavour state (for example, ve)

Neutrinos are produced in a definite flavour state (for example, v_e)

The simplest case of neutrino mixing is between two flavour & mass states:

The simplest case of neutrino mixing is between two flavour & mass states:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

The simplest case of neutrino mixing is between two flavour & mass states:

Oscillation probability depends on the energy and path length of the neutrino.

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

The simplest case of neutrino mixing is between two flavour & mass states:

Oscillation probability depends on the **energy** and **path length** of the neutrino.

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^{2}(2\theta)\sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$ It is also described by two parameters, a **mixing angle** and a **mass splitting**. $\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix} = \begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}\nu_{1}\\\nu_{2}\end{pmatrix}$ Δm_{21}^{2}

PISCES

• Statistical uncertainty is provided by a comparison of the data to the systematically shifted prediction via a Poisson likelihood:

$$\chi_{\text{stat}}^2 = 2\sum_{i}^{N} \left[\left(\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i} \right) - x_i + x_i \log \left(\frac{x_i}{\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i}} \right) \right]$$

 An additional penalty term is applied to penalise the systematic uncertainties for pulling away from nominal:

$$\chi^2_{\text{syst}} = \sum_{ij}^{N} \sum_{\alpha\beta}^{M} (s_{\alpha i} - 1) F_{\alpha i\beta j} (s_{\beta j} - 1)$$

 The final test statistic is the combination of the Poisson likelihood statistical term and the Gaussian multivariate systematic term:

$$\chi^2 = \chi^2_{syst} + \chi^2_{stat}$$

 $i = analysis bin$
 $\alpha = beam component$
 $\mu = nominal prediction$
 $F = covariance matrix$

PISCES

Statistical uncertainty is provided by a comparison of the data to the systematically shifted prediction via a Poisson likelihood:

$$\chi_{\text{stat}}^{2} = 2 \sum_{i}^{N} \left[\left(\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i} \right) - x_{i} + x_{i} \log \left(\frac{x_{i}}{\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i}} \right) \right]$$

Exact Statistics

 An additional penalty term is applied to penalise the systematic uncertainties for pulling away from nominal:

$$\chi^2_{\text{syst}} = \sum_{ij}^{N} \sum_{\alpha\beta}^{M} (s_{\alpha i} - 1) F_{\alpha i\beta j} (s_{\beta j} - 1)$$
Systematic Covariance

The final test statistic is the combination of the **Poisson likelihood statistical term** and the **Gaussian multivariate systematic term**:

$$\chi^2 = \chi^2_{\text{syst}} + \chi^2_{\text{stat}}$$

Parameter Inference

$$i$$
 = analysis bin s = systematic shift
 α = beam component x = data
 μ = nominal prediction F = covariance matrix

PISCES demonstration

Neutral current near detector PID

Neutral current far detector PID

Neutral current far detector vertex position

Neutral current far detector vertex position

Neutral current far detector vertex position

Neutral current near detector selection

	Efficiency	Purity
Data quality	100%	17.40%
Event quality	99.82%	17.38%
Containment	9.65%	42.79%
Neutrino Flavour ID	1.36%	89.51%

Neutral current far detector selection

	Efficiency	Purity
Data quality	100%	0.03%
Event quality	99.82%	0.033%
Containment	54.18%	1.00%
Cosmic Rejection	41.36 %	35.34%
Neutrino Flavour ID	39.65%	68.25%

	Efficiency	Purity
Data quality	100%	85.58%
Event quality	17.60%	83.77%
Containment	2.14%	66.78%
Neutrino Flavour ID	1.42%	99.52%

	Efficiency	Purity
Data quality	100%	0.05%
Event quality	37.79%	0.12%
Containment	15.53%	3.09%
Cosmic Rejection	14.88%	10.12%
Neutrino Flavour ID	12.29%	95.18%

Event counts

ND v _µ CC	
Data	2826066
Prediction	2448720 ± 451259
Signal	2436864
Background	11855

FD ν _μ CC		
Data	209	
Prediction	180.55 ± 34.79	
Signal	171.88	
Background	3.72	
Cosmic	4.95	

ND NC	
Data	103109
Prediction	115776 ± 25381
Signal	103635
Background	12142

FD NC		
Data	469	
Prediction	475.59 ± 30.36	
Signal	324.51	
Background	63.9	
Cosmic	87.13	