HD Supercell efficiency measurements in Liquid Argon @ Milano-Bicocca: updated results

C. Massari, on behalf of the MiB working group
25/10/2022
Setup to measure the XA-HD-SC PDE in LAr

The XA-SC installed in the test chamber to measure the PDE along its z-axis.

Supercell equipped with:
- PMMA WLS (ELJ&G2P)
- dichroic filters

Method as published in JINST 16 (2021) 09027: z-scanning with an 241Am exposed α source.
z-scanning of the SC with the 241Am α (5.480 MeV) source at the following positions:

1. **pos0**: (the lowest possible): ~2 cm above the flange.
2. **pos1, 2, 3, 4, 5, 6**: the center of each dichroic filter. Acquired: $10^4 \times 4$ wfms; 20 μs length; ~5 μs pretrigger.

3. Source at the topmost position (~49 cm from the flange) and ~ out of LAr:
 - one **μ run** ($10^4 \times 4$ events; 20 μs, 5 μs pretrigger)
 - one **s.ph.e. run** ($10^4 \times 8$ events; 20 μs length; 1.6 μs pretrigger)

Source-to-dichroic filter distance: (55 +/- 1) mm.
What we updated

- Corrected the evaluation of the source position
- Improved evaluation of statistical errors
- New analysis of F_{int} and LAr purity correction using a new template
- Introduction of a systematic error for the non-uniformity of the PDE
Fit of alpha spectra: an example

pos.1: $\sigma/\mu = 4.9\%$

pos.4: $\sigma/\mu = 4.2\%$

SC equipped with FBK & G2P
Single Photoelectrons spectrum

HPK S/N = 4.7

FBK S/N = 4.1
Solid angle evaluation

- Analytically computed as the solid angle of a pyramid with rectangular base (the SC):

\[
\Omega_{SC}(x) = 2 \arctan \left(\frac{ab\ h}{2R_1(x^2 + h^2) + 2R_2[x(x - b) + h^2]} \right) + 2 \arctan \left(\frac{ab\ h}{2R_1(x(x - b) + h^2) + 2R_2[(x - b)^2 + h^2]} \right)
\]

- The plastic frame that holds the alpha source shadow a fraction of the solid angle:

\[
\Omega_s(x) = 2 \arctan \left(\frac{wh(b - x - h \cot \alpha)}{2R_3[h \cot \alpha(b - x) + h^2] + 2R_4[(h \cot \alpha)^2 + h^2]} \right) + 2 \arctan \left(\frac{wh(b - x - h \cot \alpha)}{2R_3[(b - x)^2 + h^2] + 2R_4[h \cot \alpha(b - x) + h^2]} \right)
\]

- The total solid angle is:

\[
\Omega(x) = \begin{cases}
\Omega_{SC}(x) - \Omega_s(x) & \text{if } x < b - h \cot \alpha \\
\Omega_{SC}(x) & \text{if } x \geq b - h \cot \alpha
\end{cases}
\]
Fraction of integrated light

Synthetic wfms: SPHE © LAr profile ($A_s=0.77; \tau_s=7\text{ns}$ $A_t=0.23; \tau_t=1400\text{ ns}$)

Fraction of integrated light

HPK SPHE wfm

FBK SPHE wfm
Previous deconvoluted muon waveform

Average muon waveform with FBK

Deconvoluted muon waveform with FBK

\[\chi^2 / \text{ndf} \quad 0.002854 / 325 \]

\[
\begin{align*}
I_0 & \quad 2.182 \pm 0.01988 \\
\tau_\nu & \quad 54.14 \pm 0.3047 \\
I_1 & \quad 0.3259 \pm 0.001043 \\
\tau_1 & \quad 848.9 \pm 3.384
\end{align*}
\]

residual negative part
Since the deconvolution of the muon average waveform using the sphe mean waveform failed, we tried using a different “template”

- Selected an alpha event with few photoelectrons (~70pe), with a high F_{prompt} ($F_{\text{prompt}} > 0.9$) and normalized its amplitude
- Used this new template for the determination of F_{int} and the LAr purity correction
Mpe F_{int} evaluation

HPK

~3% difference from spe template

FBK

< 1% difference from spe template
Mpe muon convolution

- Convolution of the mpe template with LAr scintillation profile
- Fit the function with the average muon waveform and extract τ_T
- Achieved a good fit and a reliable value of τ_T
- We did it only for the FBK&G2P data

$\tau_T = 1069 \text{ ns}$
Efficiency results: HPK & G2P

\[\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.p.h.e.}(\text{ADC}) \cdot f_{\text{int}} \cdot LY_{\text{LAr}} \cdot En_{\alpha} \cdot q_{\alpha} \cdot \Omega} \]

LY_{\text{LAr}} = 5.0 \ E+4

\[q_{\alpha} = 0.7 \]

\[En_{\alpha} = 5.480 \ 	ext{MeV} \]

\[f_{\text{int}} = 0.862 \]

No X-talk and LAr purity corrections
Efficiency results: FBK & G2P

\[\epsilon = \frac{4\pi \cdot \alpha \cdot \text{peak(ADC)}}{s.\text{h.e.(ADC)} \cdot f_{\text{int}} \cdot \text{LY}_{\text{LAr}} \cdot E_{\text{n}} \cdot q_{\alpha} \cdot \Omega} \]

\(LY_{\text{LAr}} = 5.0 \times 10^4\)
\(q_{\alpha} = 0.7\)
\(E_{\text{n}} = 5.480\ \text{MeV}\)
\(f_{\text{int}} = 0.86\)

No X-talk and LAr purity corrections

FBK & G2P Measurements

\(\chi^2 / \text{ndf} = 13.14 / 7\)
Mean value \(1.724 \pm 0.03379\)
Efficiency results: FBK & Eljen

\[\epsilon = \frac{4\pi \cdot \alpha \cdot \text{peak(ADC)}}{\text{s.ph.e. (ADC) \cdot f_{int} \cdot LY_{\text{LAr}} \cdot E_{\alpha} \cdot q_{\alpha} \cdot \Omega}} \]

FBK & Eljen Measurements

\[\chi^2 / \text{ndf} = 22.6 / 9 \]

mean value \(1.502 \pm 0.02433 \)

LY\text{_LAr} = 5.0 \times 10^4

\[q_{\alpha} = 0.7 \]

\[E_{\alpha} = 5.480 \text{ MeV} \]

\[f_{\text{int}} = 0.86 \]

No X-talk and LAr purity corrections
Systematic uncertainty

- Lowest positions (x < 15cm) with FBK show a worse PDE
 - May be caused by one (or more) SiPM board with a higher V_{bkd} or by dichroic filters with worse performances in the lowest positions
 - Systematic error as the difference between the average PDE with all position ε_{all} and average PDE with higher positions (x>15cm) ε_c
Efficiency: X-talk and $P_{L\text{Ar}}$ corrections

<table>
<thead>
<tr>
<th></th>
<th>OV</th>
<th>PDE</th>
<th>Uncorrected $\varepsilon_{X\text{A}}$</th>
<th>Measured Xtalk</th>
<th>$P_{L\text{Ar}}$</th>
<th>Position systematic</th>
<th>Corrected $\varepsilon_{X\text{A}}$ x talk only</th>
<th>Corrected $\varepsilon_{X\text{A}}$ x talk and $P_{L\text{Ar}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPK** & G2P</td>
<td>3.0V</td>
<td>50%</td>
<td>1.94 (0.03)</td>
<td>6.62%</td>
<td>TBD</td>
<td>0.08</td>
<td>1.82 (0.08)</td>
<td></td>
</tr>
<tr>
<td>FBK*** & G2P</td>
<td>4.5V</td>
<td>45%</td>
<td>1.72 (0.03)</td>
<td>15.7%</td>
<td>1.06</td>
<td>0.10</td>
<td>1.49 (0.10)</td>
<td>1.58 (0.10)</td>
</tr>
<tr>
<td>FBK*** & Eljen</td>
<td>4.5V</td>
<td>45%</td>
<td>1.50 (0.02)</td>
<td>15.7%</td>
<td>TBD</td>
<td>0.06</td>
<td>1.29 (0.07)</td>
<td></td>
</tr>
<tr>
<td>JINST work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPK commercial*</td>
<td>2.7V</td>
<td>45%</td>
<td>3.5 (0.1)</td>
<td>22%</td>
<td></td>
<td></td>
<td>2.9 (0.1)</td>
<td></td>
</tr>
</tbody>
</table>

* S14160-6050HS (6 × 6) mm2, 50 μm
** 75um-HQR
*** Triple Trench

$$P_{L\text{Ar}} = \left(0.77 + 0.23 \times \frac{\tau_T}{1414 \text{ ns}}\right)^{-1}$$
Conclusions

- A non-linearity of the system response affected the determination of τ_T
 - Using a new mpe template we achieved a reliable better estimation of τ_T and the LAr purity correction
 - We also re-computed F_{int} showing a significant difference in the HPK data
- We observed a non-uniformity in the PDE along the SC dimension
 - There are several effects that may cause a disuniformity in the SC PDE (different V_{bkd}, dichroic filters, gap between SiPMs and WLS bar...)
 - The “real” PDE of the SC average all those effects
Backup
Features of the XA HD Supercell under tests

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/type of the WLS slab</td>
<td>G2P 480 x 93 mm², NO Vikuiti on short edges</td>
</tr>
<tr>
<td>Dichoics (sipm/WLS) area</td>
<td>6 x dichroics (Opto-Campinas)</td>
</tr>
<tr>
<td></td>
<td>3.9%</td>
</tr>
<tr>
<td>SIPMs</td>
<td>HPK DUNE-75um-HQR, +3V OV (50% PDE)</td>
</tr>
<tr>
<td></td>
<td>FBK TT, +4.5V OV (45% PDE)</td>
</tr>
<tr>
<td>Ganging</td>
<td>x 48 SiPMs by MiB cold Amplifier</td>
</tr>
<tr>
<td># electronic channels</td>
<td>1</td>
</tr>
<tr>
<td>SiPMs -Cold Amp.</td>
<td>AC</td>
</tr>
<tr>
<td>Cold Amp dyn. range</td>
<td>2000 ph.e.</td>
</tr>
<tr>
<td>s.ph.e. (50 Ω, 45 V)</td>
<td>~ 2.0 mV on 50 Ω for both HPK and FBK</td>
</tr>
<tr>
<td>Chamber volume</td>
<td>~ 10 l</td>
</tr>
<tr>
<td>Digitizer</td>
<td>CAEN 14-bit 250 MS/sec, 4 ns/sample</td>
</tr>
</tbody>
</table>
Hardware

- Cold cables: a bundle of five Kapton RG178 coaxial cables. No DUNE blue cable & Hirose connector due to mechanical (dimension, stiffness) constraints of the setup

- Warm cables: 2.5 m, 50 Ω LEMO cables

- Cold-to-warm flange: 10 contacts vacuum/pressure connector mounted on a CF40 flange - No Hirose:
 - the chamber and its payload are pumped down to 10^{-4} mbar prior filling
 - high LAr purity achieved with high reproducibility
 - the purity is maintained w.o. any recirculation along several days from filling
Efficiency: Updated results
HPK & G2P

\[\epsilon = \frac{4\pi \cdot \alpha \text{ peak(ADC)}}{\text{s.ph.e.(ADC)} \cdot f_{int} \cdot LY_{LA\text{r}} \cdot E_{n\alpha} \cdot q_{\alpha} \cdot \Omega} \]

\[\chi^2 / \text{ndf} \quad 2.723 / 12 \]

mean value \quad 2.151 \pm 0.06008

\[LY_{LA\text{r}} = 5.0 \text{ E+4} \]
\[q_{\alpha} = 0.7 \]
\[E_{n\alpha} = 5.480 \text{ MeV} \]
\[f_{int} = 0.862 \]

No X-talk and LAr purity corrections
Efficiency: Updated results
FBK & G2P

\[\epsilon = \frac{4\pi \cdot \alpha \text{ peak(ADC)}}{s.\text{ph.e.}(ADC) \cdot f_{\text{int}} \cdot L Y_{\text{LAr}} \cdot E n_{\alpha} \cdot q_{\alpha} \cdot \Omega} \]

FBK & G2P Measurements

\[\chi^2 / \text{ndf} \quad 3.123 / 9 \]
mean value \[1.833 \pm 0.05866 \]

LY_{LAr} = 5.0 E+4
\[q_{\alpha} = 0.7 \]
En_{\alpha} = 5.480 MeV
\[f_{\text{int}} = 0.86 \]

No X-talk and LAr purity corrections

18/12/2021
Efficiency: Updated results
FBK & Eljen

\[\epsilon = \frac{4\pi \cdot \alpha \cdot \text{peak(ADC)}}{s.p.h.e.(ADC) \cdot f_{\text{int}} \cdot L_{\text{LY}} \cdot E_{n} \cdot \alpha \cdot q_{\alpha} \cdot \Omega} \]

FBK & Eljen Measurements

\[\chi^2 / \text{ndf} \quad 1.1 / 6 \]

mean value \[1.522 \pm 0.05771 \]

\[L_{\text{LY}} = 5.0 \ E+4 \]
\[q_{\alpha} = 0.7 \]
\[E_{n} = 5.480 \ MeV \]
\[f_{\text{int}} = 0.86 \]

No X-talk and LAr purity corrections