HD Supercell efficiency measurements in Liquid Argon @ Milano-Bicocca: updated results

> <u>C. Massari</u>, on behalf of the MiB working group 25/10/2022

Setup to measure the XA-HD-SC PDE in LAr

The XA-HD-SC w. Cold FE circuit (top)

The XA-SC installed in the test chamber to measure the PDE along its z-axis.

Supercell equipped with:

- PMMA WLS (ELJ&G2P)
- dichroic filters Method as published in JINST 16 (2021) 09027: z-scanning with an 241 Am exposed α source

Method & Data taking

z-scanning of the SC with the 241 Am α (5.480 MeV) source at the following positions:

- pos0: (the lowest possible): ~2 cm above the flange.
 pos1, 2, 3, 4, 5, 6: the center of each dichroic filter. Acquired: 10⁴ x 4 wfms; 20 µs length; ~5 µs pretrigger.
- 3. Source at the topmost position (~49 cm from the flange) and ~ out of LAr:
 - one μ run (10⁴ x 4 events; 20 µs, 5 µs pretrigger)
 - one **s.ph.e. run** (10⁴ x 8 events; 20 μ s length; 1.6 μ s pretrigger)

Source-to-dichroic filter distance: (55 +/- 1) mm.

What we updated

- Corrected the evaluation of the source position
- Improved evaluation of statistical errors
- New analysis of F_{int} and LAr purity correction using a new template
- Introduction of a systematic error for the non-uniformity of the PDE

Fit of alpha spectra: an example

pos.1: *σ*/μ = 4.9 %

SC equipped with FBK & G2P

5

Single Photoelectrons spectrum

HPK S/N = 4.7

FBK S/N = 4.1

C. Massari

Solid angle evaluation

• Analytically computed as the solid angle of a pyramid with rectangular base (the SC):

$$\Omega_{SC}(x) = 2 \arctan\left(\frac{abh}{2R_1(x^2 + h^2) + 2R_2[x(x - b) + h^2]}\right) + 2 \arctan\left(\frac{abh}{2R_1(x(x - b) + h^2) + 2R_2[(x - b)^2 + h^2]}\right)$$

• The plastic frame that holds the alpha source shadow a fraction of the solid angle:

$$\Omega_{s}(x) = 2 \arctan\left(\frac{wh(b-x-h\cot\alpha)}{2R_{3}[h\cot\alpha(b-x)+h^{2}]+2R_{4}[(h\cot\alpha)^{2}+h^{2}]}\right) + 2 \arctan\left(\frac{wh(b-x-h\cot\alpha)}{2R_{3}[(b-x)^{2}+h^{2}]+2R_{4}[h\cot\alpha(b-x)+h^{2}]}\right)$$

• The total solid angle is:

$$\Omega(x) = \begin{cases} \Omega_{\rm SC}(x) - \Omega_s(x) & \text{if } x < b - h \cot \alpha \\ \Omega_{\rm SC}(x) & \text{if } x \ge b - h \cot \alpha \end{cases}$$

Fraction of integrated light

Synthetic wfms: SPHE [®] LAr profile (A_s=0.77; T_s=7ns A_t=0.23; T_t=1400 ns)

Previous deconvoluted muon waveform

Multi-photoelectron template

- Since the deconvolution of the muon average waveform using the sphe mean waveform failed, we tried using a different "template"
- Selected an alpha event with few photoelectrons (~70pe), with a high F_{prompt} (F_{prompt} > 0.9) and normalized its amplitude
 Used this new template for the
- Used this new template for the determination of F_{int} and the LAr purity correction

Mpe F_{int} evaluation

~3% difference from spe template

< 1% difference from spe template

Mpe muon convolution

- Convolution of the mpe template with LAr scintillation profile
- Fit the function with the average muon waveform and extract $\tau_{_{T}}$
- Achieved a good fit and a reliable value of $\boldsymbol{\tau}_{_{T}}$
- We did it only for the FBK&G2P data

mean µ wvf

mpe ⊗ LAr profile

C. Massari

Efficiency results: HPK & G2P

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

$$LY_{LAr} = 5.0 E+4$$

 $q_{\alpha} = 0.7$
 $En_{\alpha} = 5.480 MeV$
 $f_{int} = 0.862$

No X-talk and LAr purity corrections

Efficiency results: FBK & G2P

INF

Efficiency results: FBK & Eljen

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

$$LY_{LAr} = 5.0 E+4$$

 $q_{\alpha} = 0.7$
 $En_{\alpha} = 5.480 MeV$
 $f_{int} = 0.86$

Systematic uncertainty

- Lowest positions (x < 15cm) with FBK show a worse PDE
 - May be caused by one (or more) SiPM board with a higher V_{bkd} or by dichroic filters with worse performances in the lowest positions
 - Systematic error as the difference between the average PDE with all position ϵ_{all} and average PDE with higher positions (x>15cm)

8_c

Efficiency: X-talk and P_{LAr} corrections

		OV	PDE	Uncorre cted ɛ _{xA}	Measure d Xtalk	P _{LAr}	Position systematic	Corrected $\pmb{\varepsilon}_{_{\rm XA x talk only}}$	Corrected $m{arepsilon}_{XA x talk and}$ P_LAr
this work	HPK** & G2P	3.0V	50%	1.94 (0.03)	6.62%	TBD	0.08	1.82 (0.08)	
	FBK*** & G2P	4.5V	45%	1.72 (0.03)	15.7%	1.06	0.10	1.49 (0.10)	1.58 (0.10)
	FBK*** & Eljen	4.5V	45%	1.50 (0.02)	15.7%	TBD	0.06	1.29 (0.07)	
JINST work	HPK commercial*	2.7V	45%	3.5 (0.1)	22%			2.9 (0.1)	

* S14160-6050HS (6 × 6) mm², 50 μm

** 75um-HQR

*** Triple Trench

$$P_{\rm LAr} = \left(0.77 + 0.23 \times \frac{\tau_T}{1414 \text{ ns}}\right)^{-1}$$

Conclusions

- A non-linearity of the system response affected the determination of τ_{τ}
 - $\circ~$ Using a new mpe template we achieved a reliable better estimation of $\tau_{_{T}}$ and the LAr purity correction
 - We also re-computed F_{int} showing a significant difference in the HPK data
- We observed a non-uniformity in the PDE along the SC dimension
 - There are several effects that may cause a disuniformity in the SC PDE (different V_{bkd}, dichroic filters, gap between SiPMs and WLS bar...)
 - The "real" PDE of the SC average all those effects

Backup

Features of the XA HD Supercell under tests

Size/type of the WLS slab Dichoics (sipm/WLS) area	G2P 480 x 93 mm ² , NO Vikuiti on short edges 6 x dichroics (Opto-Campinas) 3.9%
SIPMs	HPK DUNE-75um-HQR, +3V OV (50% PDE) FBK TT, +4.5V OV (45% PDE)
Ganging	x 48 SiPMs by MiB cold Amplifier
# electronic channels	1
SiPMs -Cold Amp. Cold Amp dyn. range	AC 2000 ph.e.
s.ph.e. (50 Ω, 45 V)	~ 2.0 mV on 50 Ω for both HPK and FBK
Chamber volume	~ 10 I
Digitizer	CAEN 14-bit 250 MS/sec, 4 ns/sample
25/10/2022 - PhCollector WG meeting	C. Massari

Hardware

- Cold cables: a bundle of five Kapton RG178 coaxial cables. No DUNE blue cable & Hirose connector due to mechanical (dimension, stiffness) constraints of the setup
- Warm cables: 2.5 m, 50 Ω LEMO cables
- Cold-to-warm flange: 10 contacts vacuum/pressure connector mounted on a CF40 flange No Hirose:
 - the chamber and its payload are pumped down to 10⁻⁴ mbar prior filling →
 - high LAr purity achieved with high reproducibility
 - the purity is maintained w.o. any recirculation along several days from filling

Efficiency: Updated results HPK & G2P

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

Efficiency: Updated results FBK & G2P

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

Efficiency: Updated results FBK & Eljen

$$\epsilon = \frac{4\pi \cdot \alpha \text{ peak}(\text{ADC})}{\text{s.ph.e.}(\text{ADC}) \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \mathbf{q}_{\alpha} \cdot \Omega}$$

