HD SC PDE measurements in LAr @ MiB, square and cylindrical dimples: preliminary results

<u>C. Brizzolari</u>, on behalf of the MiB group 25/10/2022

Setup to measure the XA-HD-SC PDE in LAr

The XA-HD-SC w. Cold FE circuit (top)

The XA-SC installed in the test chamber to measure the PDE along its z-axis.

Supercell equipped with:

- PMMA WLS (G2P)
- dichroic filters

Method as published in JINST 16 (2021) 09027: z-scanning with an 241 Am exposed α source

Features of the XA HD Supercell under tests

Size/type of the WLS slab Dichoics	 2 G2P 240 x 93 mm², one with square dimples and one with cylindrical dimples, Vikuiti on ALL short edges 6 x dichroics (Opto-Campinas)
SIPMs	HPK DUNE-75um-HQR, +3V OV (50% PDE) on flex circuits + springs behind (to push against the WLS bars)
Ganging	x 48 SiPMs by MiB cold Amplifier
# electronic channels	1
SiPMs -Cold Amp. Cold Amp dyn. range	AC 2000 ph.e.
s.ph.e. (50 Ω, 45 V)	~ 2.0 mV on 50 Ω
Chamber volume	~ 10 I
Digitizer	CAEN 14-bit 250 MS/sec, 4 ns/sample

Hardware

- Cold cables: a bundle of five Kapton RG178 coaxial cables. No DUNE blue cable & Hirose connector due to mechanical (dimension, stiffness) constraints of the setup
- Warm cables: 2.5 m, 50 Ω LEMO cables
- Cold-to-warm flange: 10 contacts vacuum/pressure connector mounted on a CF40 flange No Hirose:
 - the chamber and its payload are pumped down to 10⁻⁴ mbar prior filling →
 - high LAr purity achieved with high reproducibility
 - the purity is maintained w.o. any recirculation along several days from filling

Method & Data taking

z-scanning of the SC with the $^{241}\text{Am}\alpha$ (5.480 MeV) source at the following positions:

- pos0: (the lowest possible): ~2 cm above the flange.
 pos1, 2, 3, 4, 5, 6: the center of each dichroic filter. Acquired: 10⁴ x 4 wfms; 20 µs length; ~5 µs pretrigger.
- 3. Source at the topmost position (~49 cm from the flange) and ~ out of LAr:
 - one μ run (10⁴ x 4 events; 20 μ s, 5 μ s pretrigger)
 - one **s.ph.e. run** (10⁴ x 8 events; 20 μ s length; 1.6 μ s pretrigger)

Source-to-dichroic filter distance: (55 +/- 1) mm.

Data taking & analysis

Data acquired on 14/10/2022

Conclusions

- Analysis ongoing
- For now, no clear evidence to prefer one dimple over the other

