

Pandora-based Sensitivity Studies

Isobel Mawby LBL WG Meeting 31/10/22

A Pandora CP-violation Analysis

The application of a Pandora-based nue/numu selection procedure to study CP-violation at DUNE

nue/numu Selection

Initial Performance

Pandora CP Violation Sensitivity (no systematics, no stat fluctuations)

Nue Efficiency	Nue Purity	Nue BG Rejection
60.0%	67.1%	98.6%

Numu Efficiency	Numu Purity	Numu BG Rejection
88.3%	87.2%	94.4%

Improved Performance

8 6 $\langle \Delta \chi^2$ 5 ь З 2 Initial Pandora Performance DUNE CVN Full Reco Electron + 25 Cut + Both BDTs (Modular Vars) Plus Nu Vertex Full Reco Electron + 25 Cut + Both BDTs (Modular Vars) Standard Nu Vertex 0 0.5 -0.5

Pandora CP Violation Sensitivity (no systematics, no stat fluctuations)

 δ_{CP}/π

- I developed the Pandora reconstruction and the Pandorabased CP-violation analysis to improve electron-photon separation
- These improvements resulted in substantial sensitivity gains!

Validating Results

There are several limitations to these results:

- 1. The sensitivity is only understood in one 'universe', which assumes that there are **no oscillation parameter or systematic uncertainties**
 - → This doesn't tell you how the sensitivity might look if our MC model is wrong
- 2. Degeneracies are ignored
 - → Not allowing any parameter variations so will always be able to assign a CP-violating signal to the CP-violating phase

NEED TO INCORPORATE OSCILLATION PARAMETER AND SYSTEMATIC UNCERTAINTIES!

Including Systematics

Three types of systematics to consider:

How does each systematic mimic CP-violation, if at all?

- 1. Create our 'special throw' fake data and then apply a thrown systematic shift
- 2. Investigate how well a fit, that only allows δ_{CP} to vary, can find the true CP-violating phase
- 3. Repeat
- 4. Do this for each value of the true CP-violating phase

Flux Systematics

Focus on the **dominant** contributor to the sensitivity FHC v_e :

spectrum

Results of Throws

But, the CPV spectra are bounded and this can result in interesting features in the accuracy plot...

- For each CPV phase, systematic shifts will eventually push the spectra past the true CPV spectra bounds
- The resulting best fit points will be at the CPV maxima and the chi2 will be poor
- This is most prominent at maximal CPV

Results of Throws

Same behaviour as seen for the flux systematics...

- Spread is larger than for flux shifts
- Boundary effect only seen at $-\pi/2$
- This is because the magnitude of the positive shifts are larger than those of the negative shifts

Energy Systematics

Depending on the side of the spectrum that minimises the χ^2 , a best fit CP phase value is found that is either closer $-\pi/2$ or $\pi/2$ For large shifts, a degenerate solution on the other side of the maximally violating peak can be found

- No boundary effect seen
- Distance of best fit CP phase to truth worsens as we move away from CPC
- This is because the **deviation from CPC varies sinusoidally** with the CP phase

'shifting closer to either $-\pi/2$ or $\pi/2'$

Affect of Systematics

We can make the following predictions:

- All systematics allow a CP-conserving hypothesis to better fit a CP-violating observation
 - Order of significance: xsec \rightarrow flux \rightarrow energy
- The impact of the energy systematics will be most significant at the maximally violating phases
- The degenerate solutions will have little impact on the sensitivity

Bringing it all together

- Create a fake data throw
 - Throw the oscillation parameters and systematics
 - Apply a poisson fluctuation
- Perform fit where
 - Allow oscillation parameters to vary within their constraints
 - Add in all dominant systematics

But we get negative values...

Negatives?

$$\sqrt{\Delta \chi^2_{\rm CPV}} = \sqrt{\min\{\chi^2_{\delta_{\rm CP}=0}, \chi^2_{\delta_{\rm CP}=\pm\pi}\}} - \chi^2_{\rm CPV}$$
CP-conserving fit
CP-violating fit

- Despite many seeds, the CP-violating fit sometimes finds a worse minima than the CP-conserving fit
- Fixed by seeding the CP-violating fit at the best fit position of the CP-conserving fit (jobs still running)

- The sensitivity distribution at a given CP phase is rarely Gaussian
- Median and 68% boundaries found by computing quantiles using ROOT's GetQuantiles() function

Conclusions

- 1. Illustrated the use of the Pandora-based selection procedure to study CP-violation at DUNE
- 2. Significant gains to the nue selection performance and sensitivity have been achieved
- 3. The behaviour of the systematics on the spectra and on the sensitivity have been discussed

 Sensitivity estimate with systematic and oscillation parameter uncertainties has been presented

TODO: Work is now focused on repeating for the 'improved' Pandora so that a final comparison can be made