
Update on conditions
DB deployment

26.10.2022

Lino Gerlach, Paul Laycock

Reminder

2

Long term goal:

• Develop conditions DB for DUNE

• ProtoDUNE as ‘testing ground’

• Use existing, experiment-unspecific database ‘nopayloaddb’

• Designed according to HSF recommendations

• Developed by Ruslan Mashinistov

• Deploy on Fermilab resources

What I am currently working on:

• Deployed test instance of nopayloaddb at BNL (SDCC)

• Run performance tests on that instance

• Develop simple client-side C++ library to use the REST API

nopayloaddb - Overview

3

payload

IOV

payloadlist

global tag configuration parameter for
all conditions data

List of payloads, one for each
type

timespan for which a
payload is valid

actual data needed for
offline processing

Postgres + Django application

url of a payload can be retrieved via curl:

curl http://<host>/api/cdb_rest/payloadiovs/?gtName=test_gt&majorIOV=42

… and then pick the correct type from the resulting dictionary

Deployment of nopayloaddb via OKD

4

• Shown here: deployment configuration at BNL/SDCC (for sPhenix Experiment)

• Fermilab will have a separate Postgres service (outside of OKD)

• My test instance only has 1 Pod for each service (could be scaled up)

From
 R

uslan M
ashinistov

Development of client-side tool

5

Idea: Stand-alone c++ tool to communicate with nopayloaddb

• Read & write operations on DB

• Handling of payload files: copy to remote storage, compare checksums

• Experiment unspecific

• (Proto)DUNE specific stuff only in LArSoft Service

Current Progress

• Basic functionality and error handling is implemented

• Wrote unit tests for envisioned workflow

• No checksum comparison yet

• No performance optimization and caching yet

Testing ‘nopayloaddb’ performance

6

• Simulate typical use case

• Access to service by many jobs in parallel

• Use HTCondor to create <n> jobs, making <m> calls to service each

• Call to service via ‘curl’ bash command or custom compiled tool

• After all jobs finish, extract & summarize error codes & response times

#!/usr/bin/bash

url=http://linostest.apps.usatlas.bnl.gov/api/cdb_rest/payloadiovs/?gt
Name=test_gt&majorIOV=42

for i in $(eval echo {1..$1})
do
 start=`date +%s.%N`
 httpcode=$(curl --write-out '%{http_code}' $url)
 end=`date +%s.%N`
 runtime=$(echo "$end - $start" | bc -l)
 echo runtime=$runtime
 echo httpcode=$httpcode
done

Example ‘executable’ for HTCondor job:
Define endpoint

Calls per job
Perform ‘curl’ (or
compiled c++ code) &
write out error code

Write out error code &
response time

Performance of test instance

7

Example: 100 jobs, making 10,000 calls each (1,000,000 calls in total)

via ‘curl’ bash command via compiled c++ tool (based on libcurl)

Conclusion & Outlook

8

Conclusion

• Deployed test instance of nopayloaddb at BNL

• Tested its performance (with one pod for each service)

• Looks solid: 10^6 accesses w/o error, quick response times

• Started implementing C++ client-side tool for nopayloaddb

Outlook
• Further performance testing:

• Additional pods, more realistic access patterns, fill DB w/ more data

• Let people work with client-side tool

• Implement their feedback

